umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Artificial neural network prediction of viruses in shellfish.
Show others and affiliations
2005 (English)In: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 71, no 9, 5244-53 p.Article in journal (Refereed) Published
Abstract [en]

A database was probed with artificial neural network (ANN) and multivariate logistic regression (MLR) models to investigate the efficacy of predicting PCR-identified human adenovirus (ADV), Norwalk-like virus (NLV), and enterovirus (EV) presence or absence in shellfish harvested from diverse countries in Europe (Spain, Sweden, Greece, and the United Kingdom). The relative importance of numerical and heuristic input variables to the ANN model for each country and for the combined data was analyzed with a newly defined relative strength effect, which illuminated the importance of bacteriophages as potential viral indicators. The results of this analysis showed that ANN models predicted all types of viral presence and absence in shellfish with better precision than MLR models for a multicountry database. For overall presence/absence classification accuracy, ANN modeling had a performance rate of 95.9%, 98.9%, and 95.7% versus 60.5%, 75.0%, and 64.6% for the MLR for ADV, NLV, and EV, respectively. The selectivity (prediction of viral negatives) was greater than the sensitivity (prediction of viral positives) for both models and with all virus types, with the ANN model performing with greater sensitivity than the MLR. ANN models were able to illuminate site-specific relationships between microbial indicators chosen as model inputs and human virus presence. A validation study on ADV demonstrated that the MLR and ANN models differed in sensitivity and selectivity, with the ANN model correctly identifying ADV presence with greater precision.

Place, publisher, year, edition, pages
2005. Vol. 71, no 9, 5244-53 p.
Identifiers
URN: urn:nbn:se:umu:diva-20640DOI: 10.1128/AEM.71.9.5244-5253.2005PubMedID: 16151110OAI: oai:DiVA.org:umu-20640DiVA: diva2:209190
Available from: 2009-03-24 Created: 2009-03-24 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Virology
In the same journal
Applied and Environmental Microbiology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf