umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unraveling the secrets of bacterial adhesion organelles using single molecule force spectroscopy
Umeå University, Faculty of Science and Technology, Department of Physics. (Optical Tweezers Center)
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Optical Tweezers Center)
Umeå University, Faculty of Science and Technology, Department of Physics. (Optical Tweezers Center)
Umeå University, Faculty of Science and Technology, Department of Physics. (Optical Tweezers Center)
Show others and affiliations
2010 (English)In: Springer series in chemical physics: single molecule spectroscopy in chemistry, physics and biology, Springer Verlag , 2010, 96, 337-362 p.Chapter in book (Other academic)
Abstract [en]

Many types of bacterium express micrometer-long attachment organelles (so called pili) whose role is to mediate adhesion to host tissue. Until recently, little was known about their function in the adhesion process. Forcemeasuring  ptical tweezers (FMOT) have since then been used to unravel the  iomechanical properties of various types of pili, primarily those from uropathogenic E. coli, in particular their force-vs.-elongation response, but lately also some properties of the adhesin situated and the distal end of the pilus. This knowledge provides an understanding of how piliated bacteria can sustain external shear forces caused by rinsing processes, e.g. urine flow. It has been found that anytypes of pilus exhibit unique and complex force-vs.-elongation responses. It has been conjectured that their dissimilar properties impose significant differences in their ability to sustain external forces and that different types of pilus therefore have dissimilar predisposition to withstand different types of rinsing conditions. An understanding of these properties is of high importance since it can serve as a basis for finding new means to combat bacterial adhesion, including that caused by antibiotic-resistance bacteria. This work presents a review of the current status of the assessment of biophysical properties of individual pili on single bacteria exposed to strain/stress, primarily by the FMOT technique. It also addresses, for the first time, how the elongation and retraction properties of the rod couple to the adhesive properties of the tip adhesin.

Place, publisher, year, edition, pages
Springer Verlag , 2010, 96. 337-362 p.
Series
Nobel Symposium 138: Single Molecule Spectroscopy in Chemistry, Physics and Biosciences, ISSN 0172-6218 ; 138
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:umu:diva-21488ISBN: 978-3-642-02596-9 (print)OAI: oai:DiVA.org:umu-21488DiVA: diva2:211332
Available from: 2009-04-14 Created: 2009-04-14 Last updated: 2016-05-27Bibliographically approved
In thesis
1. A study of bacterial adhesion on a single-cell level by means of force measuring optical tweezers and simulations
Open this publication in new window or tab >>A study of bacterial adhesion on a single-cell level by means of force measuring optical tweezers and simulations
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The intriguing world of microbiology is nowadays accessible for detailed exploration at a single–molecular level. Optical tweezers are a novel instrument that allows for non–invasive manipulation of single cells by the sole use of laser light and operates on the nano– and micrometer scale which corresponds to the same length scale as living cells. Moreover, forces within the field of microbiology are typically in the picoNewton range which is in accordance with the capability of force measuring optical tweezers systems. Both these conformabilities imply that force measuring optical tweezers is suitable for studies of single living cells. This thesis focuses on the mechanisms of bacterial attachments to host cells which constitute the first step in bacterial infection processes. Bacteria bind specifically to host receptors by means of adhesins that are expressed either directly on the bacterial membrane or on micrometer–long adhesion organelles that are called pili. The properties of single adhesin–receptor bonds that mediate adherence of the bacterium Helicobacter pylori are first examined at various acidities. Further on, biomechanical properties of P pili expressed by Escherichia coli are presented to which computer simulations, that capture the complex kinetics of the pili structure and precisely replicate measured data, are applied. Simulations are found to be a powerful tool for investigations of adhesive attributes of binding systems and are utilized in the analyses of the specific binding properties of P pili on a single–pilus level. However, bacterial binding systems generally involve a multitude of adhesin–receptor bonds. To explore bacterial attachments, the knowledge from single–pilus studies is brought into a full multipili attachment scenario which is analyzed by means of theoretical treatments and simulations. The results are remarkable in several aspects. Not only is it found that the intrinsic properties of P pili are composed in an optimal combination to promote strong multipili bindings. The properties of the pili structure itself are also found to be optimized with respect to its in vivo environment. Indeed, the true meaning of the attributes derived at a single–pilus level cannot be unraveled until a multipili–binding system is considered. Whereas detailed studies are presented for the helix–like P pili expressed by Gram–negative Escherichia coli, conceptual studies are presented for the open coil–like T4 pili expressed by Gram–positive Streptococcus pneumoniae. The structural and adhesive properties of these two types of pili differ considerably. These dissimilarities have far–reaching consequences on the adhesion possibilities at both single–pilus and multipili levels which are discussed qualitatively. Moreover, error analyses of conventional data processing methods in dynamic force spectroscopy as well as development of novel analysis methods are presented. These findings provide better understanding of how to perform refined force measurements on single adhesion organelles as well as how to improve the analyses of measurement data to obtain accurate parameter values of biomechanical entities. In conclusion, this thesis comprises a study of bacterial adhesion organelles and the way they cooperate to establish efficient attachment systems that can successfully withstand strong external forces that acts upon bacteria. Such systems can resist, for instance, rinsing effects and thereby allow bacteria to colonize their host. By understanding the complexity, and thereby possible weaknesses, of bacterial attachments, new targets for combating bacterial infections can be identified.

Place, publisher, year, edition, pages
Umeå: Print & Media, 2009. 108 p.
National Category
Physical Sciences
Research subject
Physics; cellforskning; Molecular Cellbiology
Identifiers
urn:nbn:se:umu:diva-21493 (URN)978-91-7264-765-7 (ISBN)
Public defence
2009-05-08, N420, Naturvetarhuset, Umeå Universitet, Umeå, 10:00 (English)
Opponent
Supervisors
Available from: 2009-04-17 Created: 2009-04-14 Last updated: 2009-04-17Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Axner, OveBjörnham, OscarCastelain, MickaëlKoutris, EfstratiosSchedin, StaffanFällman, ErikAndersson, Magnus
By organisation
Department of PhysicsDepartment of Applied Physics and Electronics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 423 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf