Change search
ReferencesLink to record
Permanent link

Direct link
A nonlinear iterative reconstruction and analysis approach to shape-based approximate electromagnetic tomography
Umeå University, Faculty of Science and Technology, Departement of Computing Science.
2008 (English)In: Ieee Transactions on Geoscience and Remote Sensing, Vol. 46, no 5, 1558-1574 p.Article in journal (Refereed) Published
Abstract [en]

A nonlinear Helmholtz-equation-modeled electromagnetic tomographic reconstruction problem is solved for the object boundary and inhomogeneity parameters in a damped Tikhonov-regularized Gauss-Newton (DTRGN) solution framework. In this paper, the object is represented in a suitable global basis, whereas the boundary is expressed as the zero level set of a signed-distance function. For an explicit parameterized boundary-representation-based reconstruction scheme, analytical Jacobian and Hessian calculations are made to express the changes in scattered field values w.r.t. changes in the inhomogeneity parameters and the control points in a spline representation of the object boundary, via the use of a level-set representation of the object. Even though, in this paper, a homogeneous dielectric is considered and a spline representation has been used to represent the boundary, the formulation can be used for a general global basis representation of the inhomogeneity as well as arbitrary parameterizations of the boundary, and is generalizable to three dimensions. Reconstruction results are presented for test cases of landminelike dielectric objects embedded in the ground under noisy data conditions. To confirm convergence and, at times, to know which of the obtained iterates are closer to the actual unknown solution, using a perturbation theory framework, a local (Hessian-based) convergence analysis is applied to the DTRGN scheme for the reconstruction, yielding estimates of convergence rates in the residual and parameter spaces.

Place, publisher, year, edition, pages
2008. Vol. 46, no 5, 1558-1574 p.
URN: urn:nbn:se:umu:diva-21877ISBN: 0196-2892OAI: diva2:212137
Available from: 2009-04-21 Created: 2009-04-21 Last updated: 2009-04-21

Open Access in DiVA

No full text

Other links

<Go to ISI>://000255222800025
By organisation
Departement of Computing Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 10 hits
ReferencesLink to record
Permanent link

Direct link