umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Computing Periodic Deflating Subspaces Associated with a Specified Set of EigenvaluesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2007 (English)In: BIT Numerical Mathematics, ISSN 0006-3835, E-ISSN 1572-9125, Vol. 47, no 4, p. 763-791Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 47, no 4, p. 763-791
##### Keywords [en]

generalized product of a K-cyclic matrix pair sequence, generalized periodic real Schur form, eigenvalue reordering, periodic generalized coupled Sylvester equation, K-cyclic equivalence transformation, generalized periodic eigenvalue problem
##### Identifiers

URN: urn:nbn:se:umu:diva-21939DOI: 10.1007/s10543-007-0143-yISBN: 0006-3835 (print)OAI: oai:DiVA.org:umu-21939DiVA, id: diva2:212196
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Note

Granat, R. Kagstroem, B. Kressner, D.Available from: 2009-04-21 Created: 2009-04-21 Last updated: 2018-06-08
##### In thesis

We present a direct method for reordering eigenvalues in the generalized periodic real Schur form of a regular K-cyclic matrix pair sequence (A (k) ,E (k) ). Following and generalizing existing approaches, reordering consists of consecutively computing the solution to an associated Sylvester-like equation and constructing K pairs of orthogonal matrices. These pairs define an orthogonal K-cyclic equivalence transformation that swaps adjacent diagonal blocks in the Schur form. An error analysis of this swapping procedure is presented, which extends existing results for reordering eigenvalues in the generalized real Schur form of a regular pair (A,E). Our direct reordering method is used to compute periodic deflating subspace pairs corresponding to a specified set of eigenvalues. This computational task arises in various applications related to discrete-time periodic descriptor systems. Computational experiments confirm the stability and reliability of the presented eigenvalue reordering method.

1. Algorithms and Library Software for Periodic and Parallel Eigenvalue Reordering and Sylvester-Type Matrix Equations with Condition Estimation$(function(){PrimeFaces.cw("OverlayPanel","overlay140959",{id:"formSmash:j_idt720:0:j_idt724",widgetVar:"overlay140959",target:"formSmash:j_idt720:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1156",{id:"formSmash:j_idt1156",widgetVar:"widget_formSmash_j_idt1156",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1209",{id:"formSmash:lower:j_idt1209",widgetVar:"widget_formSmash_lower_j_idt1209",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1210_j_idt1212",{id:"formSmash:lower:j_idt1210:j_idt1212",widgetVar:"widget_formSmash_lower_j_idt1210_j_idt1212",target:"formSmash:lower:j_idt1210:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});