umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recursive Blocked Algorithms for Solving Triangular Systems - Part II: Two-Sided and Generalized Sylvester and Lyapunov Matrix Equations
Umeå University, Faculty of Science and Technology, Department of Computing Science. Umeå University, Faculty of Science and Technology, HPC2N (High Performance Computing Centre North).
Umeå University, Faculty of Science and Technology, Department of Computing Science. Umeå University, Faculty of Science and Technology, HPC2N (High Performance Computing Centre North).
2002 (English)In: ACM Transactions on Mathematical Software, Vol. 28, no 4, 416-435 p.Article in journal (Refereed) Published
Abstract [en]

We continue our study of high-performance algorithms for solving triangular matrix equations. They appear naturally in different condition estimation problems for matrix equations and various eigenspace computations, and as reduced systems in standard algorithms. Building on our successful recursive approach applied to one-sided matrix equations (Part I), we now present novel recursive blocked algorithms for two-sided matrix equations, which include matrix product terms such as AX B-T. Examples are the discrete-time standard and generalized Sylvester and Lyapunov equations. The means for achieving high performance is the recursive variable blocking, which has the potential of matching the memory hierarchies of today's high-performance computing systems, and level-3 computations which mainly are performed as GEMM operations. Different implementation issues are discussed, including the design of efficient new algorithms for two-sided matrix products. We present uniprocessor and SMP parallel performance results of recursive blocked algorithms and routines in the state-of-the-art SLICOT library. Although our recursive algorithms with optimized kernels for the two-sided matrix equations perform more operations, the performance improvements are remarkable, including 10-fold speedups or more, compared to standard algorithms.

Place, publisher, year, edition, pages
2002. Vol. 28, no 4, 416-435 p.
Identifiers
URN: urn:nbn:se:umu:diva-21951ISBN: 0098-3500 OAI: oai:DiVA.org:umu-21951DiVA: diva2:212208
Available from: 2009-04-21 Created: 2009-04-21 Last updated: 2009-07-09

Open Access in DiVA

No full text

Other links

<Go to ISI>://000179844400003

Search in DiVA

By author/editor
Kågström, Bo
By organisation
Department of Computing ScienceHPC2N (High Performance Computing Centre North)

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf