umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On two functions of a matrix with positive definite Hermitian part
Umeå University, Faculty of Science and Technology, Departement of Computing Science.
1996 (English)In: Linear Algebra and Its Applications, Vol. 244, p. 55-68Article in journal (Refereed) Published
Abstract [en]

Let A be a square complex matrix with positive definite Hermitian part H(A) = (A + A(H))/2, and let f(A), g(A) be two functions defined by f(A) = H(A(-1))(-1), g(A) = A(-1)A(H). This paper derives new perturbation bounds for f(A), and studies the distribution and perturbation of the eigenvalues of f(A) and g(A).

Place, publisher, year, edition, pages
1996. Vol. 244, p. 55-68
Identifiers
URN: urn:nbn:se:umu:diva-21997ISBN: 0024-3795 OAI: oai:DiVA.org:umu-21997DiVA, id: diva2:212260
Available from: 2009-04-21 Created: 2009-04-21 Last updated: 2009-04-21

Open Access in DiVA

No full text in DiVA

Other links

<Go to ISI>://A1996VD69800005
By organisation
Departement of Computing Science

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf