umu.sePublications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Residual bounds of approximate solutions of the discrete-time algebraic Riccati equationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 1998 (English)In: Numerische Mathematik, Vol. 78, no 3, 463-478 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

1998. Vol. 78, no 3, 463-478 p.
##### Identifiers

URN: urn:nbn:se:umu:diva-22009ISBN: 0029-599XOAI: oai:DiVA.org:umu-22009DiVA: diva2:212272
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2009-04-21 Created: 2009-04-21 Last updated: 2009-04-21

Let (X) over tilde be a Hermitian matrix which approximates the unique Hermitian positive semi-definite solution X to the discrete-time algebraic Riccati equation (DARE) X - (FXF)-X-H + F(H)XG(1)(G(2) + G(1)(H)XG(1))(-1)G(1)(H)XF + (CC)-C-H = 0; where F is an element of C-nxn, C-2 is an element of C-mxm is Hermitian positive definite, G(1) is an element of C-nxm,C is an element of C-rxn, the pair (F, G(1)) is stabilizable, and the pair (C, F) is detectable. Assume that I + G (X) over tilde is nonsingular, and (I + G (X) over tilde)F-1 is stable. Let G = G(1)G(2)(-1)G(1)(H), H = 2 (CC)-C-H, and let (R) over cap = (X) over tilde - F-H (X) over tilde(I + G (X) over tilde)F-1 - H be the residual of the DARE with respect to (X) over tilde. Define the linear operator L by LW = W - F-H(I + (X) over tilde G)W-1(I + G (X) over tilde)F-1, W = W-H is an element of C-nxn. The main result of this paper is: If epsilon = parallel to L-1(R) over cap parallel to less than or equal to l/gamma(2 phi(2) + 2 phi root phi(2) + l + l)' where parallel to parallel to denotes any unitarily invariant norm, and l = parallel to L(-1)parallel to(-1), phi = parallel to(I + G (X) over tilde)F-1 parallel to(2), gamma = parallel to(I + G (X) over tilde)(-1)G parallel to(2), then \\(X) over tilde - X\\ less than or equal to 2l epsilon/(1 + gamma epsilon)l + root(1 + gamma epsilon)(2)l(2) - 4(phi(2) + l)gamma l epsilon(-) less than or equal to 2\\L-1(R) over cap\\/1 + gamma\\L-1(R) over cap R\\(.)

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});