umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Contamination of surface, ground, and drinking water from pharmaceutical production
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2009 (English)In: Environmental Toxicology and Chemistry, ISSN 0730-7268, E-ISSN 1552-8618, Vol. 28, no 12, 2522-2527 p.Article in journal (Refereed) Published
Abstract [en]

Low levels of pharmaceuticals are detected in surface, ground, and drinking water worldwide. Usage and incorrect disposal have been considered the major environmental sources of these micro-contaminants. Recent publications, however, suggest that wastewater from drug production can potentially be a source of much higher concentrations in certain locations. We investigated the environmental fate of active pharmaceutical ingredients in a major production area for the global bulk-drug market. Water samples were taken from a common effluent treatment plant near Hyderabad, India, which receives process water from about 90 bulk drug manufacturers. Surface water was analyzed from the recipient stream and from two lakes that are not contaminated by the treatment plant. Water samples were also taken from wells in six nearby villages. The samples were analyzed for the presence of twelve pharmaceuticals with LC-MS/MS. All wells were determined to be contaminated with drugs. Ciprofloxacin, enoxacin, cetirizine, terbinafine and citalopram were detected at >1microg l-1 in several wells. Very high concentrations of ciprofloxacin (up to 14 mg L-1) and other pharmaceuticals (up to 2 mg L-1) were found in the effluent of the treatment plant and in the two lakes (up to 6.5 mg L-1). Thus, insufficient wastewater treatment in one of the world's largest centers for bulk drug production leads to unprecedented drug contamination of surface, ground, and drinking water. This raises serious concerns regarding the development of antibiotic resistance, and it creates a major challenge for producers and regulatory agencies to improve the situation.

Place, publisher, year, edition, pages
SETAC Journals , 2009. Vol. 28, no 12, 2522-2527 p.
Keyword [en]
Industrial pollution, Fluoroquinolones, Antibiotic resistance, India
Identifiers
URN: urn:nbn:se:umu:diva-23175DOI: 10.1897/09-073.1PubMedID: 19449981OAI: oai:DiVA.org:umu-23175DiVA: diva2:220790
Available from: 2009-06-02 Created: 2009-06-02 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Fick, JerkerSöderström, HannaLindberg, Richard HPhan, ChauTysklind, Mats
By organisation
Department of Chemistry
In the same journal
Environmental Toxicology and Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1351 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf