umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Antioxidant responses to acute ozone challenge in the healthy human airway
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
Show others and affiliations
2009 (English)In: Inhalation Toxicology, ISSN 0895-8378, E-ISSN 1091-7691, Vol. 21, no 11, 933-942 p.Article in journal (Refereed) Published
Abstract [en]

The aim of the study was to characterize ozone-induced antioxidant responses in the human airway, including the resident leukocyte population, bronchial mucosa, and respiratory-tract lining fluids. Fifteen healthy subjects were exposed to 0.2 ppm ozone for 2 h, with bronchial wash, bronchoalveolar lavage, and biopsy sampling performed 6 h postexposure. Nasal lavage was also performed at multiple time points pre- and postexposure to evaluate responses during the actual exposure period. During the ozone challenge significant losses of nasal lining fluid urate and vitamin C were observed, which resolved 6 h postexposure. At this time point, increased numbers of neutrophils and enhanced concentrations of total glutathione, vitamin C, and urate were seen in bronchial airway lavages. In bronchoalveolar lavage, increased concentrations of total glutathione, vitamin C, urate, alpha-tocopherol, and extracellular superoxide dismutase occurred 6 h post ozone. In alveolar leukocytes significant losses of glutathione were observed, whereas ascorbate concentrations in endobronchial mucosal biopsies were elevated after ozone at this time. These data demonstrate that ozone elicits a broad spectrum of airway antioxidant responses, with initial losses of vitamin C and urate followed by a phase of augmentation of low-molecular-weight antioxidant concentrations at the air-lung interface. The temporal association between the increased RTLF glutathione following ozone and the loss of this thiol from macrophages implies a mobilization to the lung surface, despite the absence of a quantitative association. We propose this constitutes an acute protective adaptation to ozone.

Place, publisher, year, edition, pages
2009. Vol. 21, no 11, 933-942 p.
National Category
Respiratory Medicine and Allergy
Identifiers
URN: urn:nbn:se:umu:diva-23216DOI: 10.1080/08958370802603789PubMedID: 19459773OAI: oai:DiVA.org:umu-23216DiVA: diva2:221574
Available from: 2009-06-04 Created: 2009-06-04 Last updated: 2012-03-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Behndig, Annelie FBlomberg, AndersHelleday, Ragnberth

Search in DiVA

By author/editor
Behndig, Annelie FBlomberg, AndersHelleday, Ragnberth
By organisation
Pulmonary Medicine
In the same journal
Inhalation Toxicology
Respiratory Medicine and Allergy

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 200 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf