Change search
ReferencesLink to record
Permanent link

Direct link
Energy balance, organellar redox status, and acclimation to environmental stress
Umeå University, Faculty of Science and Technology, Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre.
Show others and affiliations
2006 (English)In: Canadian Journal of Botany, ISSN 0008-4026, Vol. 84, 1355-1370 p.Article in journal (Refereed) Published
Abstract [en]

In plants and algal cells, changes in light intensity can induce intrachloroplastic and retrograde regulation of gene expression in response to changes in the plastoquinone redox status. We review the evidence in support of the thesis that the chloroplast acts as a general sensor of cellular energy imbalance sensed through the plastoquinone pool. Alteration in cellular energy balance caused by chloroplast or mitochondrial metabolism can induce intracellular signalling to affect chloroplastic and nuclear gene expression in response, not only to light intensity, but to a myriad of abiotic stresses. In addition, this chloroplastic redox sensing also appears to have a broader impact, affecting long-distance systemic signalling related to plant growth and development. The organization of the respiratory electron transport chains of mitochondria and heterotrophic prokaryotes is comparable to that of chloroplast thylakoid membranes, and the redox state of the respiratory ubiquinone pool is a well-documented cellular energy sensor. Thus, modulation of electron transport component redox status by abiotic stress regulates organellar as well as nuclear gene expression. From the evidence presented, we suggest that the photosynthetic and respiratory machinery in prokaryotic and eukaryotic organisms have a dual function: primary cellular energy transformation, and global environmental sensing.

Place, publisher, year, edition, pages
2006. Vol. 84, 1355-1370 p.
URN: urn:nbn:se:umu:diva-24787DOI: 10.1139/B06-098OAI: diva2:227500
Available from: 2009-07-14 Created: 2009-07-14

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Plant PhysiologyUmeå Plant Science Centre
In the same journal
Canadian Journal of Botany

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link