Change search
ReferencesLink to record
Permanent link

Direct link
X-ray emission spectroscopy to study Ligand Valence Orbitals in Mn coordination complexes
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2009 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, no 36, 13161-13167 p.Article in journal (Refereed) Published
Abstract [en]

We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in X-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular X-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g., C, N, O...), to be distinguished. A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H2O)6]2+, [Mn(H2O)5OH]+, and [Mn(H2O)5NH3]2+. An application of the method, with comparison between theory and experiment, is presented for the solvated Mn2+ ion in water and three Mn coordination complexes, namely [LMn(acac)N3]BPh4, [LMn(B2O3Ph2)(ClO4)], and [LMn(acac)N]BPh4, where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion, and B2O3Ph2 represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion.

Place, publisher, year, edition, pages
ACS Publications , 2009. Vol. 131, no 36, 13161-13167 p.
National Category
Chemical Sciences
URN: urn:nbn:se:umu:diva-25222DOI: 10.1021/ja808526mOAI: diva2:229182
Available from: 2009-08-11 Created: 2009-08-11 Last updated: 2012-08-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Messinger, Johannes
By organisation
Department of Chemistry
In the same journal
Journal of the American Chemical Society
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 62 hits
ReferencesLink to record
Permanent link

Direct link