umu.sePublications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The Skorohod problem and weak approximation of stochastic differential equations in time-dependent domainsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2009 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå universitet , 2009. , 36 p.
##### Series

Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 42
##### Keyword [en]

Skorohod problem, weak approximation, time-dependent domain, stochastic differential equations, parabolic partial differential equations, oblique reflection, stopped diffusions, Euler scheme, adaptive methods, sensitivity analysis, financial derivatives, 'Greeks'
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-25429ISBN: 978-91-7264-823-4OAI: oai:DiVA.org:umu-25429DiVA: diva2:231754
##### Distributor:

Institutionen för matematik och matematisk statistik, 90187, Umeå
##### Public defence

2009-09-18, MA121, MIT-huset, Umeå universitet, Umeå, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2009-08-31 Created: 2009-08-17 Last updated: 2010-11-03Bibliographically approved
##### List of papers

This thesis consists of a summary and four scientific articles. All four articles consider various aspects of stochastic differential equations and the purpose of the summary is to provide an introduction to this subject and to supply the notions required in order to fully understand the articles.

In the first article we conduct a thorough study of the multi-dimensional Skorohod problem in time-dependent domains. In particular we prove the existence of cádlág solutions to the Skorohod problem with oblique reflection in time-independent domains with corners. We use this existence result to construct weak solutions to stochastic differential equations with oblique reflection in time-dependent domains. In the process of obtaining these results we also establish convergence results for sequences of solutions to the Skorohod problem and a number of estimates for solutions, with bounded jumps, to the Skorohod problem.

The second article considers the problem of determining the sensitivities of a solution to a second order parabolic partial differential equation with respect to perturbations in the parameters of the equation. We derive an approximate representation of the sensitivities and an estimate of the discretization error arising in the sensitivity approximation. We apply these theoretical results to the problem of determining the sensitivities of the price of European swaptions in a LIBOR market model with respect to perturbations in the volatility structure (the so-called ‘Greeks’).

The third article treats stopped diffusions in time-dependent graph domains with low regularity. We compare, numerically, the performance of one adaptive and three non-adaptive numerical methods with respect to order of convergence, efficiency and stability. In particular we investigate if the performance of the algorithms can be improved by a transformation which increases the regularity of the domain but, at the same time, reduces the regularity of the parameters of the diffusion.

In the fourth article we use the existence results obtained in Article I to construct a projected Euler scheme for weak approximation of stochastic differential equations with oblique reflection in time-dependent domains. We prove theoretically that the order of convergence of the proposed algorithm is 1/2 and conduct numerical simulations which support this claim.

1. The Skorohod oblique reflection problem in time-dependent domains$(function(){PrimeFaces.cw("OverlayPanel","overlay360258",{id:"formSmash:j_idt423:0:j_idt427",widgetVar:"overlay360258",target:"formSmash:j_idt423:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Pricing and hedging of financial derivatives using a posteriori error estimates and adaptive methods for stochastic differential equations$(function(){PrimeFaces.cw("OverlayPanel","overlay360270",{id:"formSmash:j_idt423:1:j_idt427",widgetVar:"overlay360270",target:"formSmash:j_idt423:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. On Monte Carlo algorithms applied to Dirichlet problems for parabolic operators in the setting of time-dependent domains$(function(){PrimeFaces.cw("OverlayPanel","overlay211758",{id:"formSmash:j_idt423:2:j_idt427",widgetVar:"overlay211758",target:"formSmash:j_idt423:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Weak approximation of obliquely reflected diffusions in time-dependent domains$(function(){PrimeFaces.cw("OverlayPanel","overlay360273",{id:"formSmash:j_idt423:3:j_idt427",widgetVar:"overlay360273",target:"formSmash:j_idt423:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});