Change search
ReferencesLink to record
Permanent link

Direct link
Adsorption mechanisms of EDTA at the water−iron oxide interface: implications for dissolution
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2009 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 18, 7762-7771 p.Article in journal (Refereed) Published
Abstract [en]

The interactions between chelating agents and metal oxide particles play important roles for the distribution and availability of metal ions in aquatic environments. In this work, the adsorption of ethylenediaminetetraacetate (EDTA) onto goethite (α-FeOOH) was studied as a function of pH, time, and background electrolyte concentration at 25.0 °C, and the molecular structures of the surface complexes formed were analyzed by means of infrared spectroscopy using the attenuated total reflectance sampling technique. The collective infrared spectroscopic results of this study show that two surface complexes consisting of HEDTA3− and H2EDTA2− predominate at the water−goethite interface within the pH range of 3−9. No direct interactions of these complexes with surface Fe(III) ions were detected; hence, most likely the surface complexes are stabilized at the interface by electrostatic and hydrogen-bonding forces. The formation of the EDTA surface complexes is fast (time scale of minutes), but a slower (time scale of hours to days) dissolution reaction also occurs. The dissolved iron in solution is in the form of the highly stable FeEDTA solution complex, and the experimental evidence presented indicates that this complex can readsorb to the mineral surface. As dissolution proceeds, the concentration of FeEDTA in the solution phase increases, and this in turn leads to a buildup of readsorbed FeEDTA onto goethite. In the pH range of 4−7, this dissolution and readsorption process increases the total EDTA concentration at the surface. Under the experimental conditions in the present study, it is primarily the presence of uncomplexed EDTA in solution that drives the dissolution of goethite resulting in the subsequent readsorption of FeEDTA, while the HEDTA3− and H2EDTA2− surface complexes are stable during this process.

Place, publisher, year, edition, pages
ACS Publications , 2009. Vol. 113, no 18, 7762-7771 p.
National Category
Chemical Sciences
URN: urn:nbn:se:umu:diva-25497DOI: 10.1021/jp809190mOAI: diva2:231896
Available from: 2009-08-18 Created: 2009-08-18 Last updated: 2012-10-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Norén, KatarinaLoring, John SPersson, Per
By organisation
Department of Chemistry
In the same journal
The Journal of Physical Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 64 hits
ReferencesLink to record
Permanent link

Direct link