umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An auxin gradient and maximum in the arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis
Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Show others and affiliations
2009 (English)In: The Plant Cell, ISSN 1040-4651, E-ISSN 1532-298X, Vol. 21, no 6, 1659-1668 p.Article in journal (Refereed) Published
Abstract [en]

Local concentration gradients of the plant growth regulator auxin (indole-3-acetic acid [IAA]) are thought to instruct the positioning of organ primordia and stem cell niches and to direct cell division, expansion, and differentiation. High-resolution measurements of endogenous IAA concentrations in support of the gradient hypothesis are required to substantiate this hypothesis. Here, we introduce fluorescence-activated cell sorting of green fluorescent protein-marked cell types combined with highly sensitive mass spectrometry methods as a novel means for analyses of IAA distribution and metabolism at cellular resolution. Our results reveal the presence of IAA concentration gradients within the Arabidopsis thaliana root tip with a distinct maximum in the organizing quiescent center of the root apex. We also demonstrate that the root apex provides an important source of IAA and that cells of all types display a high synthesis capacity, suggesting a substantial contribution of local biosynthesis to auxin homeostasis in the root tip. Our results indicate that local biosynthesis and polar transport combine to produce auxin gradients and maxima in the root tip.

Place, publisher, year, edition, pages
2009. Vol. 21, no 6, 1659-1668 p.
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:umu:diva-25704DOI: 10.1105/tpc.109.066480PubMedID: 19491238OAI: oai:DiVA.org:umu-25704DiVA: diva2:233297
Available from: 2009-08-31 Created: 2009-08-31 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Petersson, Sara VJohansson, Annika IKowalczyk, MariuszMakoveychuk, AlexanderMoritz, ThomasGrebe, MarkusSandberg, GöranLjung, Karin
By organisation
Umeå Plant Science Centre (UPSC)Department of Plant Physiology
In the same journal
The Plant Cell
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf