umu.sePublications
Change search

Cite
Citation style
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Other style
More styles
Language
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Other locale
More languages
Output format
• html
• text
• asciidoc
• rtf
On a two-phase free boundary condition for p-harmonic measures
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2009 (English)In: Manuscripta mathematica, ISSN 0025-2611, E-ISSN 1432-1785, Vol. 129, no 2, p. 231-249Article in journal (Refereed) Published
##### Abstract [en]

Let Ωi⊂Rn,i∈{1,2} , be two (δ, r 0)-Reifenberg flat domains, for some 0<δ<δ^ and r 0 > 0, assume Ω1∩Ω2=∅ and that, for some w∈Rn and some 0 < r, w∈∂Ω1∩∂Ω2,∂Ω1∩B(w,2r)=∂Ω2∩B(w,2r) . Let p, 1 < p < ∞, be given and let u i , i∈{1,2} , denote a non-negative p-harmonic function in Ω i , assume that u i , i∈{1,2}, is continuous in Ω¯i∩B(w,2r) and that u i = 0 on ∂Ωi∩B(w,2r) . Extend u i to B(w, 2r) by defining ui≡0 on B(w,2r)∖Ωi. Then there exists a unique finite positive Borel measure μ i , i∈{1,2} , on R n , with support in ∂Ωi∩B(w,2r) , such that if ϕ∈C∞0(B(w,2r)) , then∫Rn|∇ui|p−2⟨∇ui,∇ϕ⟩dx=−∫Rnϕdμi.Let Δ(w,2r)=∂Ω1∩B(w,2r)=∂Ω2∩B(w,2r) . The main result proved in this paper is the following. Assume that μ 2 is absolutely continuous with respect to μ 1 on Δ(w, 2r), d μ 2 = kd μ 1 for μ 1-almost every point in Δ(w, 2r) and that logk∈VMO(Δ(w,r),μ1) . Then there exists δ~=δ~(p,n)>0 , δ~<δ^ , such that if δ≤δ~ , then Δ(w, r/2) is Reifenberg flat with vanishing constant. Moreover, the special case p = 2, i.e., the linear case and the corresponding problem for harmonic measures, has previously been studied in Kenig and Toro (J Reine Angew Math 596:1–44, 2006).

##### Place, publisher, year, edition, pages
Springer , 2009. Vol. 129, no 2, p. 231-249
##### National Category
Mathematics Probability Theory and Statistics
##### Research subject
Mathematics; Mathematical Statistics
##### Identifiers
ISI: 000266010200005OAI: oai:DiVA.org:umu-31119DiVA, id: diva2:291044
Available from: 2010-01-29 Created: 2010-01-29 Last updated: 2018-06-08Bibliographically approved
##### In thesis
1. p-harmonic functions near the boundary
Open this publication in new window or tab >>p-harmonic functions near the boundary
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Place, publisher, year, edition, pages
Umeå: Umeå universitet, Institutionen för matematik och matematisk statistik, 2011. p. 228
##### Series
Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 50
##### National Category
Mathematical Analysis
Mathematics
##### Identifiers
urn:nbn:se:umu:diva-47942 (URN)978-91-7459-287-0 (ISBN)
##### Public defence
2011-10-28, Mit-huset, MA121, Umeå universitet, Umeå, 10:00
##### Supervisors
Available from: 2011-10-07 Created: 2011-10-04 Last updated: 2018-06-08Bibliographically approved

#### Open Access in DiVA

No full text in DiVA

Publisher's full text

#### Authority records BETA

Lundström, Niklas L.P.Nyström, Kaj

#### Search in DiVA

##### By author/editor
Lundström, Niklas L.P.Nyström, Kaj
##### By organisation
Department of Mathematics and Mathematical Statistics
##### In the same journal
Manuscripta mathematica
##### On the subject
MathematicsProbability Theory and Statistics

doi
urn-nbn

#### Altmetric score

doi
urn-nbn
Total: 213 hits

Cite
Citation style
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Other style
More styles
Language
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Other locale
More languages
Output format
• html
• text
• asciidoc
• rtf