Change search
ReferencesLink to record
Permanent link

Direct link
Structure and backbone dynamics of Apo-CBFbeta in solution.
Umeå University, Faculty of Medicine, Molecular Biology (Faculty of Medicine).
2001 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 40, no 38, 11423-11432 p.Article in journal (Refereed) Published
Abstract [en]

Runx proteins constitute a family of mammalian transcription factors that interact with DNA through their evolutionarily conserved Runt domain. CBFbeta, alternatively denoted PEBP2beta, is the non-DNA-binding heterodimer partner and acts to enhance the DNA binding affinity of Runx proteins. Runx proteins and CBFbeta are associated with a variety of biological functions and human diseases; they are, for example, together the most frequent targets for chromosomal rearrangements in acute human leukemias. We have determined the solution structure and characterized the backbone dynamics of C-terminally truncated fragments containing residues 1-141 of CBFbeta. The present apo-CBFbeta structure is very similar to that seen in a Runt-CBFbeta complex. An evaluation of backbone (15)N NMR relaxation parameters shows that CBFbeta is a rigid molecule with high order parameters throughout the backbone; the only regions displaying significant dynamics are a long loop and the C-terminal alpha-helix. A few residues display relaxation behavior indicating conformational exchange on microsecond to millisecond time scales, but only one of these is located at the Runt binding surface. Our structure and dynamics analysis of CBFbeta therefore suggests that the protein binds to Runt without large conformational changes or induced folding ("lock-and-key" interaction). The apo-CBFbeta structure presented here exhibits several significant differences with two other published NMR ensembles of very similar protein fragments. The differences are located in four regions outside of the central beta-barrel, whereas the beta-barrel itself is almost identical in the three NMR structures. The comparison illustrates that independently determined NMR structures may display rather large differences in backbone conformation in regions that appear to be well-defined in each of the calculated NMR ensembles.

Place, publisher, year, edition, pages
2001. Vol. 40, no 38, 11423-11432 p.
National Category
Medical and Health Sciences
URN: urn:nbn:se:umu:diva-33069DOI: 10.1021/bi010713+PubMedID: 11560490OAI: diva2:309941
Available from: 2010-04-09 Created: 2010-04-09 Last updated: 2010-04-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Grundström, Thomas
By organisation
Molecular Biology (Faculty of Medicine)
In the same journal
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 27 hits
ReferencesLink to record
Permanent link

Direct link