umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Can ecological stoichiometry help explain patterns of biological invasions?
Show others and affiliations
2010 (English)In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 119, no 5, 779-790 p.Article in journal (Refereed) Published
Abstract [en]

Several mechanisms for biological invasions have been proposed, yet to date there is no common framework that can broadly explain patterns of invasion success among ecosystems with different resource availabilities. Ecological stoichiometry (ES) is the study of the balance of energy and elements in ecological interactions. This framework uses a multi-nutrient approach to mass-balance models, linking the biochemical composition of organisms to their growth and reproduction, which consequently influences ecosystem structure and functioning. We proposed a conceptual model that integrates hypotheses of biological invasions within a framework structured by fundamental principles of ES. We then performed meta-analyses to compare the growth and production performances of native and invasive organisms under low- and high-nutrient conditions in terrestrial and aquatic ecosystems. Growth and production rates of invasive organisms (plants and invertebrates) under both low- and high-nutrient availability were generally larger than those of natives. Nevertheless, native plants outperformed invasives in aquatic ecosystems under low-nutrient conditions. We suggest several distinct stoichiometry-based mechanisms to explain invasion success in low- versus high-nutrient conditions; low-nutrient conditions: higher resource-use efficiency (RUE; C:nutrient ratios), threshold elemental ratios (TERs), and trait plasticity (e.g. ability of an organism to change its nutrient requirements in response to varying nutrient environmental supply); high-nutrient conditions: higher growth rates and reproductive output related to lower tissue C:nutrient ratios, and increased trait plasticity. Interactions of mechanisms may also yield synergistic effects, whereby nutrient enrichment and enemy release have a disproportionate effect on invasion success. To that end, ES provides a framework that can help explain how chemical elements and energy constrain key physiological and ecological processes, which can ultimately determine the success of invasive organisms.

Place, publisher, year, edition, pages
2010. Vol. 119, no 5, 779-790 p.
Identifiers
URN: urn:nbn:se:umu:diva-33311DOI: 10.1111/j.1600-0706.2009.18549.xISI: 000276936000005OAI: oai:DiVA.org:umu-33311DiVA: diva2:311493
Available from: 2010-04-21 Created: 2010-04-21 Last updated: 2017-10-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rubach, Anja
By organisation
Department of Ecology and Environmental SciencesUmeå Marine Sciences Centre (UMF)
In the same journal
Oikos

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 206 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf