umu.sePublications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Weak approximation of obliquely reflected diffusions in time-dependent domainsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2010 (English)In: Journal of Computational Mathematics, ISSN 0254-9409, Vol. 28, no 5, 579-605 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2010. Vol. 28, no 5, 579-605 p.
##### Keyword [en]

Stochastic differential equations, Oblique reflection, Robin boundary conditions, Skorohod problem, Time-dependent domain, Weak approximation, Monte Carlo method, Parabolic partial differential equations, Projected Euler scheme
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-37420DOI: 10.4208/jcm.1003-m2957ISI: 000281879100002OAI: oai:DiVA.org:umu-37420DiVA: diva2:360273
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2010-11-03 Created: 2010-11-02 Last updated: 2010-11-03Bibliographically approved
##### In thesis

In an earlier paper, we proved the existence of solutions to the Skorohod problem with oblique reflection in time-dependent domains and, subsequently, applied this result to the problem of constructing solutions, in time-dependent domains, to stochastic differential equations with oblique reflection. In this paper we use these results to construct weak approximations of solutions to stochastic differential equations with oblique reflection, in time-dependent domains in R^d, by means of a projected Euler scheme. We prove that the constructed method has, as is the case for normal reflection and time-independent domains, an order of convergence equal to 1/2 and we evaluate the method empirically by means of two numerical examples. Furthermore, using a well-known extension of the Feynman-Kac formula, to stochastic differential equations with reflection, our method gives, in addition, a Monte Carlo method for solving second order parabolic partial differential equations with Robin boundary conditions in time-dependent domains.

1. The Skorohod problem and weak approximation of stochastic differential equations in time-dependent domains$(function(){PrimeFaces.cw("OverlayPanel","overlay231754",{id:"formSmash:j_idt647:0:j_idt651",widgetVar:"overlay231754",target:"formSmash:j_idt647:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});