umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects of river restoration on riparian biodiversity in secondary channels of the Pite River, Sweden
Department of Environmental Science, Huxley College of the Environment, Western Washington University, Bellingham, Washington 98225-9181 USA.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. (Landscape Ecology Group)
Department of Environmental Science, Huxley College of the Environment, Western Washington University, Bellingham, Washington 98225-9181 USA.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. (Landscape Ecology Group ; Arcum)
Visa övriga samt affilieringar
2012 (Engelska)Ingår i: Environmental Management, ISSN 0364-152X, E-ISSN 1432-1009, Vol. 49, nr 1, s. 130-141Artikel i tidskrift (Övrigt vetenskapligt) Published
Abstract [en]

Between 1850 and 1970, rivers throughout Sweden were channelized to facilitate timber floating.  Floatway structures were installed to streamline banks and disconnect flow to secondary channels, resulting in simplified channel morphologies and more homogenous flow regimes.  In recent years, local authorities have begun to restore channelized rivers.  In this study, we examined the effects of restoration on riparian plant communities at previously disconnected secondary channels of the Pite River.  We detected no increase in riparian diversity at restored sites relative to unrestored (i.e., disconnected) sites, but we did observe significant differences in species composition of both vascular plant and bryophyte communities.  At disconnected sites, plots closest to the stream featured greater representation of mesic-hydric floodplain species, whereas plots farthest from the stream featured greater representation of mesic-xeric species characteristic of the surrounding upland forest.  In contrast, restored sites were most strongly represented by upland species at all distances relative to the stream.  These patterns suggest that restoration has resulted in increased water levels in reconnected channels, but that the restored fluvial regime has not influenced the development of characteristic flood-adapted plant communities.  This may be due to the short time interval (ca. 5 years) since restoration.  Previous studies have demonstrated relatively quick responses to similar restoration in single-channel tributaries, but secondary channels may respond differently due to the more buffered hydrologic regimes typically seen in anabranching systems.  These findings illustrate how restoration outcomes can vary according to hydrologic, climatic and ecological factors, reinforcing the need for site-specific restoration strategies.

Ort, förlag, år, upplaga, sidor
2012. Vol. 49, nr 1, s. 130-141
Nyckelord [en]
biodiversity, boreal, bryophyte, off-channel habitat, restoration, riparian, river, secondary channel, vegetation
Nationell ämneskategori
Ekologi
Identifikatorer
URN: urn:nbn:se:umu:diva-37825DOI: 10.1007/s00267-011-9773-6OAI: oai:DiVA.org:umu-37825DiVA, id: diva2:370241
Tillgänglig från: 2010-11-16 Skapad: 2010-11-16 Senast uppdaterad: 2018-06-08Bibliografiskt granskad
Ingår i avhandling
1. Ice, wood and rocks: regulating elements in riverine ecosystems
Öppna denna publikation i ny flik eller fönster >>Ice, wood and rocks: regulating elements in riverine ecosystems
2010 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Riparian ecosystems are of great importance in the landscape, connecting landscape elements longitudinally and laterally and often encompassing sharp environmental gradients in ecological processes and communities. They are influenced by fluvial disturbances such as flooding, erosion and sediment deposition, which create dynamic and spatially heterogeneous habitats that support a high diversity of species. Riverine ecosystems belong among the world’s most threatened systems. In rivers throughout the world, human alterations to fluvial disturbance regimes have resulted in degraded ecosystems and species loss. For example, in Sweden, watercourses of all sizes have been channelized to facilitate timber floating, but in the last 10–20 years the impacts in some of the affected rivers have been reduced by restoration actions. The objectives of this thesis are to evaluate how riverine ecosystems in general, with specific focus on riparian communities, are affected by (1) restoration of channelized reaches by boulder replacement, (2) ice formation, and (3) restoration of in-stream wood abundance in the stream channel. Objective (1) was assessed by quantifying the retention of plant propagules in channelized and restored stream reaches and by evaluating effects on riparian plant and bryophyte communities in disconnected and re-opened side channels. Retention of plant propagule mimics was highest at low flows and in sites where boulders and large wood had been replaced into the channel. Propagules are however unlikely to establish unless they can be further dispersed during subsequent spring high flows to higher riparian elevations suitable for establishment. Thus, immigration to new suitable sites may occur stepwise. Our study demonstrates that restoration of channel complexity through replacement of boulders and wood can enhance retention of plant propagules, but also highlights the importance of understanding how restoration effects vary with flow. We detected no differences in riparian diversity between re-opened and disconnected side channels, but we did observe significant differences in species composition of both vascular plant and bryophyte communities. Disconnected sites had more floodplain species, whereas restored sites had more species characteristic of upland forest. This suggests that the reopening of side channels resulted in increased water levels, resulting in new riparian zones developing in former upland areas, but that the characteristic floodplain communities have not had time to develop in response to the restored fluvial regime. Objective (2) was approached by evaluating the effect of both natural anchor ice formation and experimentally created ice in the riparian zone. Riparian plant species richness and evenness proved to be higher in plots affected by anchor ice. Plants with their over-wintering organs above the ice sheet suffered from the treatment but the overall species richness increased in ice-treated plots. Objective (3) was evaluated by studying wood recruitment and movement, channel hydraulics, propagule retention and fish abundance in streams restored with large wood. Only one stream experienced reduced velocities after large wood addition. The large size and reduced velocity were probably also the reasons why this stream proved to be the best one in trapping natural, drifting wood. Increased retention and decreased mechanical fragmentation in large wood sites will lead to decreased loss of detritus from the site and therefore higher availability of coarse particulate organic matter which can result in more species rich shredder communities. Our study did not show that the occurrence of large wood had an important role in controlling density or biomass of brown trout.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2010. s. 30
Nyckelord
riparian zone, timber floating, river restoration, cut-off side channels, hydrochory, large wood, anchor ice, fish
Identifikatorer
urn:nbn:se:umu:diva-37827 (URN)978-91-7459-083-8 (ISBN)
Disputation
2010-12-16, Älgsalen, Uminova Science Park, Tvistevägen 48, Umeå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2010-11-25 Skapad: 2010-11-16 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Engström, JohannaNilsson, ChristerJansson, Roland

Sök vidare i DiVA

Av författaren/redaktören
Engström, JohannaNilsson, ChristerJansson, Roland
Av organisationen
Institutionen för ekologi, miljö och geovetenskap
I samma tidskrift
Environmental Management
Ekologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 294 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf