umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects of river ice on riparian vegetation
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. (Landscape Ecology Group ; Arcum)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. (Landscape Ecology Group ; Arcum)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. (Landscape Ecology Group)
2011 (Engelska)Ingår i: Freshwater Biology, ISSN 0046-5070, E-ISSN 1365-2427, Vol. 56, nr 6, s. 1095-1105Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

1.  Many rivers and streams experience pronounced ice dynamics caused by the formation of anchor and frazil ice, leading to flooding and disturbance of riparian and aquatic communities.  The effects of dynamic ice conditions on riverine biota are little known.

2.  We studied the formation of anchor ice in natural streams over 2 years, and assessed the effects of anchor ice on riparian vegetation by comparing sites with frequent or abundant and little or no anchor ice formation. We also studied the direct impact of ice on riparian plants by experimentally creating ice in the riparian zone over three winters, and by exposing plants of different life-forms to ‑18oC cold ice in the laboratory.

3.  Riparian species richness per 1-m2 plot was higher at sites affected by anchor ice than at sites where anchor ice was absent or rare. Dominance was lower at anchor ice sites, suggesting that ice disturbance enhanced species richness. Species composition was more homogenous among plots at anchor ice sites. Experimentally creating riparian ice corroborated the comparative results, with species richness increasing in ice-treated plots compared to controls, irrespective of whether the sites showed natural anchor ice.

4.  Because of human alterations of running waters, the natural effects of river ice on stream hydrology, geomorphology and ecology are little known.  Global warming in northern streams will lead to more dynamic ice conditions, offering new challenges for aquatic organisms and river management.  We expect that the results discussed here can stimulate new research, contributing to a better understanding of ecosystem function during winter.

Ort, förlag, år, upplaga, sidor
Blackwell Publishing , 2011. Vol. 56, nr 6, s. 1095-1105
Nyckelord [en]
anchor ice, frazil ice, riparian vegetation, rivers, Sweden
Nationell ämneskategori
Ekologi
Identifikatorer
URN: urn:nbn:se:umu:diva-38334DOI: 10.1111/j.1365-2427.2010.02553.xOAI: oai:DiVA.org:umu-38334DiVA, id: diva2:375258
Tillgänglig från: 2010-12-07 Skapad: 2010-12-07 Senast uppdaterad: 2018-06-08Bibliografiskt granskad
Ingår i avhandling
1. Ice, wood and rocks: regulating elements in riverine ecosystems
Öppna denna publikation i ny flik eller fönster >>Ice, wood and rocks: regulating elements in riverine ecosystems
2010 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Riparian ecosystems are of great importance in the landscape, connecting landscape elements longitudinally and laterally and often encompassing sharp environmental gradients in ecological processes and communities. They are influenced by fluvial disturbances such as flooding, erosion and sediment deposition, which create dynamic and spatially heterogeneous habitats that support a high diversity of species. Riverine ecosystems belong among the world’s most threatened systems. In rivers throughout the world, human alterations to fluvial disturbance regimes have resulted in degraded ecosystems and species loss. For example, in Sweden, watercourses of all sizes have been channelized to facilitate timber floating, but in the last 10–20 years the impacts in some of the affected rivers have been reduced by restoration actions. The objectives of this thesis are to evaluate how riverine ecosystems in general, with specific focus on riparian communities, are affected by (1) restoration of channelized reaches by boulder replacement, (2) ice formation, and (3) restoration of in-stream wood abundance in the stream channel. Objective (1) was assessed by quantifying the retention of plant propagules in channelized and restored stream reaches and by evaluating effects on riparian plant and bryophyte communities in disconnected and re-opened side channels. Retention of plant propagule mimics was highest at low flows and in sites where boulders and large wood had been replaced into the channel. Propagules are however unlikely to establish unless they can be further dispersed during subsequent spring high flows to higher riparian elevations suitable for establishment. Thus, immigration to new suitable sites may occur stepwise. Our study demonstrates that restoration of channel complexity through replacement of boulders and wood can enhance retention of plant propagules, but also highlights the importance of understanding how restoration effects vary with flow. We detected no differences in riparian diversity between re-opened and disconnected side channels, but we did observe significant differences in species composition of both vascular plant and bryophyte communities. Disconnected sites had more floodplain species, whereas restored sites had more species characteristic of upland forest. This suggests that the reopening of side channels resulted in increased water levels, resulting in new riparian zones developing in former upland areas, but that the characteristic floodplain communities have not had time to develop in response to the restored fluvial regime. Objective (2) was approached by evaluating the effect of both natural anchor ice formation and experimentally created ice in the riparian zone. Riparian plant species richness and evenness proved to be higher in plots affected by anchor ice. Plants with their over-wintering organs above the ice sheet suffered from the treatment but the overall species richness increased in ice-treated plots. Objective (3) was evaluated by studying wood recruitment and movement, channel hydraulics, propagule retention and fish abundance in streams restored with large wood. Only one stream experienced reduced velocities after large wood addition. The large size and reduced velocity were probably also the reasons why this stream proved to be the best one in trapping natural, drifting wood. Increased retention and decreased mechanical fragmentation in large wood sites will lead to decreased loss of detritus from the site and therefore higher availability of coarse particulate organic matter which can result in more species rich shredder communities. Our study did not show that the occurrence of large wood had an important role in controlling density or biomass of brown trout.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2010. s. 30
Nyckelord
riparian zone, timber floating, river restoration, cut-off side channels, hydrochory, large wood, anchor ice, fish
Identifikatorer
urn:nbn:se:umu:diva-37827 (URN)978-91-7459-083-8 (ISBN)
Disputation
2010-12-16, Älgsalen, Uminova Science Park, Tvistevägen 48, Umeå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2010-11-25 Skapad: 2010-11-16 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Engström, JohannaJansson, RolandNilsson, ChristerWeber, Christine

Sök vidare i DiVA

Av författaren/redaktören
Engström, JohannaJansson, RolandNilsson, ChristerWeber, Christine
Av organisationen
Institutionen för ekologi, miljö och geovetenskap
I samma tidskrift
Freshwater Biology
Ekologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 409 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf