umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Association genetics of complex traits in plants
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-6031-005X
2011 (English)In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 189, no 4, 909-922 p.Article in journal (Refereed) Published
Abstract [en]

Association mapping is rapidly becoming the main method for dissecting the genetic architecture of complex traits in plants. Currently most association mapping studies in plants are preformed using sets of genes selected to be putative candidates for the trait of interest, but rapid developments in genomics will allow for genome-wide mapping in virtually any plant species in the near future. As the costs for genotyping are decreasing, the focus has shifted towards phenotyping. In plants, clonal replication and/or inbred lines allows for replicated phenotyping under many different environmental conditions. Reduced sequencing costs will increase the number of studies that use RNA sequencing data to perform expression quantitative trait locus (eQTL) mapping, which will increase our knowledge of how gene expression variation contributes to phenotypic variation. Current population sizes used in association mapping studies are modest in size and need to be greatly increased if mutations explaining less than a few per cent of the phenotypic variation are to be detected. Association mapping has started to yield insights into the genetic architecture of complex traits in plants, and future studies with greater genome coverage will help to elucidate how plants have managed to adapt to a wide variety of environmental conditions.

Place, publisher, year, edition, pages
Oxford: Blackwell Scientific Publications Ltd , 2011. Vol. 189, no 4, 909-922 p.
National Category
Other Biological Topics
Identifiers
URN: urn:nbn:se:umu:diva-40052DOI: 10.1111/j.1469-8137.2010.03593.xPubMedID: 21182529OAI: oai:DiVA.org:umu-40052DiVA: diva2:397739
Available from: 2011-02-15 Created: 2011-02-15 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Ingvarsson, Pär KStreet, Nathaniel R
By organisation
Department of Ecology and Environmental SciencesDepartment of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
New Phytologist
Other Biological Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 207 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf