Change search
ReferencesLink to record
Permanent link

Direct link
Regulation of allelic exclusion of IgH by calmodulin inhibition of E2A
Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
(English)Manuscript (preprint) (Other academic)
URN: urn:nbn:se:umu:diva-40817OAI: diva2:402996
Available from: 2011-03-10 Created: 2011-03-10 Last updated: 2011-03-18Bibliographically approved
In thesis
1. Regulation of B cell development by antigen receptors
Open this publication in new window or tab >>Regulation of B cell development by antigen receptors
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The developmental processes of lymphopoiesis generate mature B lymphocytes from hematopoietic stem cells through increasingly restricted intermediates. Networks of transcription factors regulate these cell fate choices and are composed of both ubiquitously expressed and B lineage-specific factors. E-protein transcription factors are encoded by the three genes E2A, E2-2 (SEF2-1), and HEB. The E2A gene is required for B cell development and encodes the alternatively spliced proteins E12 and E47.

During B lymphocyte development, the cells have to pass several checkpoints verifying the functionality of their antigen receptors. Early in the development, the expression of a pre-B cell receptor (pre-BCR) with membrane-bound immunoglobulin (Ig) heavy chain protein associated with surrogate light chain (SLC) proteins is a critical checkpoint that monitors for functional Ig heavy chain rearrangement. Signaling from the pre-BCR induces survival and a limited clonal expansion. Here it is shown that pre-BCR signaling rapidly down-regulates the SLCs l5 and VpreB and also the co-receptor CD19. Ca2+ signaling and E2A were shown to be essential for this regulation. E2A mutated in its binding site for the Ca2+ sensor protein calmodulin (CaM), and thus with CaM-resistant DNA binding, makes l5, VpreB and CD19 expression resistant to the inhibition following pre-BCR stimulation. Thus, Ca2+ down-regulates SLC and CD19 gene expression upon pre-BCR stimulation through inhibition of E2A by Ca2+/CaM. A general negative feedback regulation of the pre-BCR proteins as well as many co-receptors and proteins in signal pathways from the receptor was also shown.

After the ordered recombination of Ig heavy chain gene segments, also Ig light chain gene segments are recombined together to create antibody diversity. The recombinations are orchestrated by the recombination activating gene (RAG) enzymes, other enzymes that cleave/mutate/assemble DNA of the Ig loci, and the transcription factor Pax5. A key feature of the immune system is the concept that one lymphocyte has only one antigen specificity that can be selected for or against. This requires that only one of the alleles of genes for Ig chains is made functional. The mechanism of this allelic exclusion has however been an enigma. Here pre-BCR signaling was shown to down-regulate several components of the recombination machinery including RAG1 and RAG2 through CaM inhibition of E2A. Furthermore, E2A, Pax5 and the RAGs were shown to be in a complex bound to key sequences on the IgH gene before pre-BCR stimulation and instead bound to CaM after this stimulation. Thus, the recombination complex is directly released through CaM inhibition of E2A.

Upon encountering antigens, B cells must adapt to produce a highly specific and potent antibody response. Somatic hypermutation (SH), which introduces point mutations in the variable regions of Ig genes, can increase the affinity for antigen, and antibody effector functions can be altered by class switch recombination (CSR), which changes the expressed constant region exons. Activation-induced cytidine deaminase (AID) is the mutagenic antibody diversification enzyme that is essential for both SH and CSR. The AID enzyme has to be tightly controlled as it is a powerful mutagen. BCR signaling, which signals that good antibody affinity has been reached, was shown to inhibit AID gene expression through CaM inhibition of E2A. 

SH increases the antigen binding strength by many orders of magnitude. Each round of SH leads to one or a few mutations, followed by selection for increased affinity. Thus, BCR signaling has to enable selection for successive improvements in antibodies (Ab) over an extremely broad range of affinities. Here the BCR is shown to be subject to general negative feedback regulation of the receptor proteins as well as many co-receptors and proteins in signal pathways from the receptor. Thus, the BCR can down-regulate itself to enable sensitive detection of successive improvements in antigen affinity. Furthermore, the feedback inhibition of the BCR signalosome and most of its protein, and most other gene regulations by BCR stimulation, is through inhibition of E2A by Ca2+/CaM.

Differentiation to Ab-secreting plasmablasts and plasma cells is antigen-driven. The interaction of antigen with the membrane-bound Ab of the BCR is critical in determining which clones enter the plasma cell response. Genome-wide analysis showed that differentiation of B cells to Ab-secreting cell is induced by BCR stimulation through very fast regulatory events, and induction of IRF-4 and down-regulation of Pax5, Bcl-6, MITF, Ets-1, Fli-1 and Spi-B gene expressions were identified as immediate early events. Ca2+ signaling through CaM inhibition of E2A was essential for these rapid down-regulations of immediate early genes after BCR stimulation in initiation of plasma cell differentiation.

Place, publisher, year, edition, pages
Umeå: Print & Media, 2011. 60 p.
Umeå University medical dissertations, ISSN 0346-6612 ; 1409
calcium, calmodulin, e-proteins, E2A, B cell development, antigen receptor signaling, surrogate light chains, RAG, allelic exclusion, V(D)J recombination, AID, negative feedback regulation, plasma cell differentiation
urn:nbn:se:umu:diva-40819 (URN)978-91-7459-167-5 (ISBN)
Public defence
2011-04-08, Major Groove, Inst Molekylärbiologi, By 6L, NUS, Umeå, 09:00 (English)
Available from: 2011-03-18 Created: 2011-03-10 Last updated: 2011-03-18Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Hauser, JannekGrundström, Thomas
By organisation
Department of Molecular Biology (Faculty of Medicine)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 31 hits
ReferencesLink to record
Permanent link

Direct link