Change search
ReferencesLink to record
Permanent link

Direct link
The electronic structures of the S(2) states of the oxygen evolving complexes of photosystem II in plants and cyanobacteria in the presence and absence of methanol
Show others and affiliations
2011 (English)In: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1807, no 7, 829-840 p.Article in journal (Refereed) Published
Abstract [en]

The electronic properties of the Mn(4)O(x)Ca cluster in the S(2) state of the oxygen evolving complex (OEC) were studied using X- and Q-band EPR and Q-band (55)Mn-ENDOR using photosystem II preparations isolated from the thermophilic cyanobacterium T. elongatus and higher plants (spinach). The data presented here show that there is very little difference between the two species. Specifically it is shown that: (i) only small changes are seen in the fitted isotropic hyperfine values, suggesting that there is no significant difference in the overall spin distribution (electronic coupling scheme) between the two species; (ii) the inferred fine-structure tensor of the only Mn(III) ion in the cluster is of the same magnitude and geometry for both species types, suggesting that the Mn(III) ion has the same coordination sphere in both sample preparations; and (iii) the data from both species are consistent with only one structural model available in the literature, namely the Siegbahn structure [Siegbahn, P. E. M. Accounts Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al., Phys. Chem. Chem. Phys.2009, 11, 6788-6798]. These measurements were made in the presence of methanol because it confers favorable magnetic relaxation properties to the cluster that facilitate pulse-EPR techniques. In the absence of methanol the separation of the ground state and the first excited state of the spin system is smaller. For cyanobacteria this effect is minor but in plant PS II it leads to a break-down of the S(T)=½ spin model of the S(2) state. This suggests that the methanol-OEC interaction is species dependent. It is proposed that the effect of small organic solvents on the electronic structure of the cluster is to change the coupling between the outer Mn (Mn(A)) and the other three Mn ions that form the trimeric part of the cluster (Mn(B), Mn(C), Mn(D)), by perturbing the linking bis-μ-oxo bridge. The flexibility of this bridging unit is discussed with regard to the mechanism of O-O bond formation.

Place, publisher, year, edition, pages
Amsterdam: Elsevier, 2011. Vol. 1807, no 7, 829-840 p.
Keyword [en]
EPR, 55Mn-ENDOR, Photosystem II, OEC, Mn4OxCa cluster, methanol, Orbach process, Raman process, Spin Hamiltonian
National Category
Biochemistry and Molecular Biology Biophysics
URN: urn:nbn:se:umu:diva-41211DOI: 10.1016/j.bbabio.2011.03.002ISI: 000291518400007PubMedID: 21406177OAI: diva2:405064
Available from: 2011-03-21 Created: 2011-03-21 Last updated: 2016-09-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Messinger, Johannes
By organisation
Department of Chemistry
In the same journal
Biochimica et Biophysica Acta
Biochemistry and Molecular BiologyBiophysics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 103 hits
ReferencesLink to record
Permanent link

Direct link