Change search
ReferencesLink to record
Permanent link

Direct link
Substance P accelerates hypercellularity and angiogenesis in tendon tissue and enhances paratendinitis in response to Achilles tendon overuse in a tendinopathy model
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, British Columbia, Canada.
Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
Show others and affiliations
2011 (English)In: British Journal of Sports Medicine, ISSN 0306-3674, E-ISSN 1473-0480, Vol. 45, no 13, 1017-1022 p.Article in journal (Refereed) Published
Abstract [en]

Background Tenocytes produce substance P (SP) and its receptor (neurokinin-1 receptor (NK-1R) is expressed throughout the tendon tissue, expecially in patients with tendinopathy and tissue changes (tendinosis) including hypercellularity and vascular proliferation. Considering the known effects of SP, one might ask whether SP contributes to these canges.

Objectives To test whether development of tendinosislike changes (hypercellularity and angiogenesis) is accelerated during a 1-week course of ecercise with local administration of SP in an establish Achilles tendinopathy model.

Methods Rabbits were subjected to a protocol of Achilles tendon overuse for 1 week, in conjunction with SP injections in the paratenon. Exercised control animals received NaCl injections or no injections, and unexercised, uninjected controls were also used. Tenocyte number and vascular density, as well as paratendinous inflammation, were evaluated. Immunohistochemistry and in sity hybridisation to detect NK-1R were conducted.

Results There was a significant increase in tenocyte number in the SP-injected and NaCl-injected groups compared with both unexercised and exercised, uninjected controls. Tendon blood vessels increased in number in the SP-injected group compared with unexercised controls, a finding not seen in NaCl-injected controls or in uninjected, exercised animals. Paratendinous inflammation was more pronounced in the SP-injected group than in the NaCl controls. NK-1R was detected in blood vessel walls, nerves, inflammatory cells and tenocytes.

Conclusions SP accelerated the development of tendinosis-like changes in the rabbit. Achilles tendon, which supports theories of a potential role of SP in tendinosis development; a fact of clinical interest since SP effects can be effectively blocked. The angiogenic response to SP injections seems related to parateninitis.

Place, publisher, year, edition, pages
Loughborough: British Assoc. of Sport and Medicine , 2011. Vol. 45, no 13, 1017-1022 p.
National Category
Sport and Fitness Sciences
URN: urn:nbn:se:umu:diva-42293DOI: 10.1136/bjsm.2010.082750OAI: diva2:409091
Available from: 2011-04-07 Created: 2011-04-07 Last updated: 2013-05-15Bibliographically approved
In thesis
1. Neuropeptide and catecholamine effects on tenocytes in tendinosis development: studies on two model systems with focus on proliferation and apoptosis
Open this publication in new window or tab >>Neuropeptide and catecholamine effects on tenocytes in tendinosis development: studies on two model systems with focus on proliferation and apoptosis
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Background: Achilles tendinopathy is a common clinical syndrome of chronic Achilles tendon pain combined with thickening of the tendon and impaired tendon function. Tendinopathy is often, but not always, induced by mechanical overload, and is frequently accompanied by abnormalities at the tissue level, such as hypercellularity and angiogenesis, in which case the condition is called tendinosis. In tendinosis, there are no signs of intratendinous inflammation, but occasionally increased apoptosis is observed. Tendinosis is often hard to treat and its pathogenesis is still not clear. Recently, a new hypothesis has gained support, suggesting a biochemical model based on the presence of a non-neuronal production of classically neuronal signal substances by the primary tendon cells (tenocytes) in tendinosis. The possible functional importance of these signal substances in tendons is unknown and needs to be studied. In particular, the neuropeptide substance P (SP) and catecholamines are of interest in this regard, since these substances have been found to be up-regulated in tendinosis. As both SP and catecholamines are known to exert effects in other tissues resulting in changes similar to those characteristic of tendinosis, it is possible that they have a role in tendinosis development. It is furthermore unknown what elicits the increased intratendinous neuropeptide production in tendinosis, but given that tendon overload is a prominent riskfactor, it is possible that mechanical stimuli are involved.

The hypothesis of this thesis work was that intratendinous production of SP is up-regulated in response to load of Achilles tendons/tenocytes, and thatstimulation of the preferred SP receptor, the neurokinin-1 receptor (NK-1 R), aswell as stimulation of the catecholamine α2 adrenoreceptors, contribute to the hypercellularity seen in tendinosis, via increased proliferation and/or decreased apoptosis, and that SP stimulates tendon angiogenesis. The purpose of the studies was to test this hypothesis. To achieve this, two model systems were used: One in vivo (rabbit Achilles tendon overload model of tendinosis) and one in vitro (human primary Achilles tendon cell culture model).

Results: In the rabbit Achilles tendon tissue, SP and NK-1 R expression was extensive in the blood vessel walls, but also to some extent seen in the tenocytes. Quantification of endogenously produced SP in vivo confirmed intratendinous production of the peptide. The production of SP by human tendon cells in vitro was furthermore demonstrated. The catecholamine synthesizing enzyme tyrosine hydroxylase (TH), as well as the α2A adrenoreceptor (α2A AR), were detected in the tenocytes, both in vivo in the rabbit tissue and in vitro in the human tendon cells. As a response to mechanical loading in the in vivo model, the intratendinous levels of SP increased, and this elevation was found to precede distinct tendinosis changes. The in vitro model demonstrated the same response to load, i.e. an increased SP expression, but in this case also a decrease in the NK-1 R expression. In the in vivo model, exogenously administered SP, as well as clonidine (an α2 AR agonist), accelerated tenocyte hypercellularity, an effect that was not seen when administrating a specific α2A AR antagonist. Exogenous administration of SP also resulted in intratendinous angiogenesis and paratendinous inflammation. In the in vitro model, both SP and clonidine had proliferative effects on the human tenocytes, specifically mediated via NK-1R and α2A AR, respectively; both of which in turn involved activation/phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Exogenously administered SP, in Anti-Fas induced apoptosis of the tenocytes in vitro, confirmed SP to have an anti-apoptotic effect on these cells. This effect was specifically mediated via NK-1 R and the known anti-apoptotic Akt pathway.

Conclusions: In summary, this thesis concludes that stimulation of NK-1 R and α2A AR on tenocytes, both in vitro and in vivo, mediates significant cell signalling effects leading to processes known to occur in tendinosis, including hypercellularity. The pathological role of the hypercellularity in tendinosis is still unclear, but it is likely to affect collagen metabolism/turnover and arrangement, and thereby indirectly tendon biomechanical function. Additional evidence is here provided showing that SP not only causes tenocyte proliferation, but also contributes to anti-apoptotic events. Furthermore, it was concluded that SP may be involved in the development of tendinosis, since its production is increased in response to load, preceding tendinosis, and since SP accelerates tendinosis changes, through some mechanistic pathways here delineated. These findings suggest that inhibition of SP, and possibly also catecholamines, could be beneficial in the reconstitution/normalization of tendon structure in tendinosis.

Place, publisher, year, edition, pages
Umeå: Umeå Universitet, 2013. 80 p.
Umeå University medical dissertations, ISSN 0346-6612 ; 1572
substance P, neurotransmitter, tendinopathy, overuse injury, rabbit, tendon cell, Achilles tendon
National Category
Cell and Molecular Biology
urn:nbn:se:umu:diva-70193 (URN)978-91-7459-633-5 (Print) (ISBN)978-91-7459-634-2 (PDF) (ISBN)
Public defence
2013-06-05, sal BiA201, Biologihuset, Umeå universitet, Umeå, 09:00 (English)
Available from: 2013-05-15 Created: 2013-05-07 Last updated: 2013-05-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Andersson, GustavBackman, LudvigLorentzon, RonnyForsgren, StureDanielson, Patrik
By organisation
AnatomySports Medicine
In the same journal
British Journal of Sports Medicine
Sport and Fitness Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 135 hits
ReferencesLink to record
Permanent link

Direct link