Change search
ReferencesLink to record
Permanent link

Direct link
Dispersive MHD waves and alfvenons in charge non-neutral plasmas
Swedish Institute of Space Physics, Uppsala.
Swedish Institute of Space Physics, Uppsala and Kiruna, Sweden.
2008 (English)In: Nonlinear processes in geophysics, ISSN 1023-5809, E-ISSN 1607-7946, Vol. 15, no 4, 681-693 p.Article in journal (Refereed) Published
Abstract [en]

Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfv´en, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ionsto 300–800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfv´en waves in space plasmas.

Place, publisher, year, edition, pages
2008. Vol. 15, no 4, 681-693 p.
URN: urn:nbn:se:umu:diva-42824OAI: diva2:410478
Available from: 2011-04-14 Created: 2011-04-13 Last updated: 2011-04-19Bibliographically approved
In thesis
1. Solitary waves and enhanced incoherent scatter ion lines
Open this publication in new window or tab >>Solitary waves and enhanced incoherent scatter ion lines
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis addresses solitary waves and their significance for auroral particle acceleration, coronal heating and incoherent scatter radar spectra. Solitary waves are formed due to a balance of nonlinear and dispersive effects. There are several nonlinearities present in ideal magnetohydrodynamics (MHD) and dispersion can be introduced by including theHall termin the generalised Ohm’s law. The resulting system of equations comprise the classical ideal MHD waves, whistlers, drift waves and solitarywave solutions. The latter reside in distinct regions of the phase space spanned by the speed and the angle (to the magnetic field) of the propagating wave. Within each region, qualitatively similar solitary structures are found. In the limit of neglected electron intertia, the solitary wave solutions are confined to two regions of slow and fast waves, respectively. The slow (fast) structures are associated with density compressions (rarefactions) and positive (negative) electric potentials. Such negative potentials are shown to accelerate electrons in the auroral region (solar corona) to tens (hundreds) of keV. The positive electric potentials could accelerate solar wind ions to velocities of 300–800 km/s. The structure widths perpendicular to themagnetic field are in the Earth’s magnetosphere (solar corona) of the order of 1–100 km (m). This thesis also addresses a type of incoherent scatter radar spectra, where the ion line exhibits a spectrally uniform power enhancement with the up- and downshifted shoulder and the spectral region in between enhanced simultaneously and equally. The power enhancements are one order of magnitude above the thermal level and are often localised to an altitude range of less than 20 km at or close to the ionospheric F region peak. The observations are well-described by a model of ion-acoustic solitary waves propagating transversely across the radar beam. Two cases of localised ion line enhancements are shown to occur in conjunction with auroral arcs drifting through the radar beam. The arc passages are associated with large gradients in ion temperature, which are shown to generate sufficiently high velocity shears to give rise to growing Kelvin-Helmholtz (K-H) instabilities. The observed ion line enhancements are interpreted in the light of the low-frequency turbulence associated with these instabilities.

Abstract [sv]

Denna avhandling handlar om solitära vågor och deras roll i norrskensacceleration och koronaupphettning, samt deras signatur i spektra uppmätta med inkoherent spridningsradar. Solitära vågor bildas genom en balans mellan ickelinjära och dispersiva effekter. Ickelinjäriteter finns det gott om i ideal magnetohydrodynamik (MHD) och dispersion kan införas genom att inkludera Halltermen i den generaliserade Ohms lag. Det resulterande ekvationssystemet omfattar de klassiska vågorna inom ideal MHD, visslare, driftvågor och solitära vågor. De sistnämnda återfinns i väldefinierade områden i fasrummet som spänns upp av farten och vinkeln (mot magnetfältet) för den propagerande vågen. Inom varje sådant område återfinns kvalitativt lika solitära våglösningar. Om man försummar elektronernas tröghet begränsas de solitära våglösningarna till två områden med långsamma respektive snabba vågor. De långsamma (snabba) strukturerna är associerade med täthets-kompressioner (förtunningar) och positiva (negativa) elektriska potentialer. De negativa potentialerna visas kunna accelerera elektroner i norrskensområdet (solens korona) till tiotals (hundratals) keV medan de positiva potentialerna accelererar solvindsjoner till hastigheter på 300–800 km/s. Strukturbredderna vinkelrät mot magnetfältet är i jordens magnetosfär (solens korona) av storleksordningen 1–100 km (m). Denna avhandling tar även upp en typ av inkoherent spridningsradarspektra, där jonlinjen uppvisar en spektralt uniform förstärkning. Detta innebär att den upp- och nedskiftade skuldran och spektralbandet däremellan förstärks simultant och i lika hög grad. Effektförstärkningen är en storleksordning över den termiska nivån och är ofta lokaliserad till ett höjd-intervall av mindre än 20 km nära jonosfärens F-skiktstopp. Observationerna beskrivs väl av en modell med solitära vågor som propagerar transversellt genom radarstrålen. Två fall av lokaliserade jonlinjeförstärkningar visas sammanfalla med att norrskensbågar driver genom radarstrålen. I samband med bågarnas passage uppmäts stora gradienter i jontemperatur, vilket visas skapa tillräckligt kraftiga hastighetsskjuvningar för att Kelvin-Helmholtz-instabiliteter ska tillåtas växa. De observerade jonlinjeförstärkningarna tolkas i skenet av den lågfrekventa turbulensen som är kopplad till dessa instabiliteter.

Place, publisher, year, edition, pages
Kiruna: Institutet för rymdfysik, Umeå universitet, 2011. 51 p.
IRF Scientific Report, ISSN 0284-1703 ; 301
plasma waves and instabilities, nonlinear phenomena, solitons and solitary waves, ionosphere, Sun: corona, incoherent scatter radar, MHD, plasmavågor och instabiliteter, ickelinjära fenomen, solitoner och solitära vågor, jonosfär, solen: korona, inkoherent spridningsradar, MHD
National Category
Fusion, Plasma and Space Physics Fusion, Plasma and Space Physics Fusion, Plasma and Space Physics Other Physics Topics
Research subject
Physics; Space and Plasma Physics
urn:nbn:se:umu:diva-42955 (URN)978-91-977255-7-6 (ISBN)
Public defence
2011-05-13, Aulan, Institutet för rymdfysik, Rymdcampus 1, Kiruna, 10:00 (English)
Available from: 2011-04-20 Created: 2011-04-15 Last updated: 2011-04-19Bibliographically approved

Open Access in DiVA

FULLTEXT(614 kB)94 downloads
File information
File name FULLTEXT02.pdfFile size 614 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Journal webpage

Search in DiVA

By author/editor
Ekeberg, Jonas
In the same journal
Nonlinear processes in geophysics

Search outside of DiVA

GoogleGoogle Scholar
Total: 94 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 54 hits
ReferencesLink to record
Permanent link

Direct link