umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metal binding and activity of ribonucleotide reductase protein R2 mutants: conditions for formation of the mixed manganese-iron cofactor
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Show others and affiliations
2009 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 48, no 27, 6532-6539 p.Article in journal (Refereed) Published
Abstract [en]

Class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (C. tm.) lacks the tyrosyl radical and uses a Mn(IV)-Fe(III) cluster for cysteinyl radical initiation in the large subunit. Here we investigated and compared the metal content and specific activity of the C. tm. wild-type R2 protein and its F127Y mutant, as well as the native mouse R2 protein and its Y177F mutant, all produced as recombinant proteins in Escherichia coli. Our results indicate that the affinity of the RNR R2 proteins for binding metals is determined by the nature of one specific residue in the vicinity of the dimetal site, namely the one that carries the tyrosyl radical in class Ia and Ib R2 proteins. In mouse R2, this tyrosyl residue is crucial for the activity of the enzyme, but in C. tm., the corresponding phenylalanine plays no obvious role in activation or catalysis. However, for the C. tm. wild-type R2 protein to bind Mn and gain high specific activity, there seems to be a strong preference for F over Y at this position. In studies of mouse RNR, we find that the native R2 protein does not bind Mn whereas its Y177F mutant incorporates a significant amount of Mn and exhibits 1.4% of native mouse RNR activity. The observation suggests that a manganese-iron cofactor is associated with the weak activity in this protein.

Place, publisher, year, edition, pages
2009. Vol. 48, no 27, 6532-6539 p.
Identifiers
URN: urn:nbn:se:umu:diva-42882DOI: 10.1021/bi900693sPubMedID: 19492792OAI: oai:DiVA.org:umu-42882DiVA: diva2:410654
Available from: 2011-04-14 Created: 2011-04-14 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Domkin, VladimirThelander, Lars

Search in DiVA

By author/editor
Domkin, VladimirThelander, Lars
By organisation
Department of Medical Biochemistry and Biophysics
In the same journal
Biochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 104 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf