umu.sePublications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt147",{id:"formSmash:upper:j_idt147",widgetVar:"widget_formSmash_upper_j_idt147",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt148_j_idt150",{id:"formSmash:upper:j_idt148:j_idt150",widgetVar:"widget_formSmash_upper_j_idt148_j_idt150",target:"formSmash:upper:j_idt148:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Duality-based adaptive model reduction for one-way coupled thermoelastic problemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)In: International Journal for Numerical Methods in Engineering, ISSN 0029-5981, E-ISSN 1097-0207, Vol. 91, no 3, 306-318 p.Article in journal (Other academic) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012. Vol. 91, no 3, 306-318 p.
##### Keyword [en]

model reduction, component mode synthesis, thermoelasticity, adaptive, a posteriori
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-43743DOI: 10.1002/nme.4273ISI: 000305681300005OAI: oai:DiVA.org:umu-43743DiVA: diva2:415721
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt388",{id:"formSmash:j_idt388",widgetVar:"widget_formSmash_j_idt388",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt394",{id:"formSmash:j_idt394",widgetVar:"widget_formSmash_j_idt394",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt400",{id:"formSmash:j_idt400",widgetVar:"widget_formSmash_j_idt400",multiple:true});
##### Note

Article included in thesis in manuscript form.Available from: 2011-05-09 Created: 2011-05-09 Last updated: 2012-07-23Bibliographically approved
##### In thesis

In this paper, we derive a discrete a posteriori error estimate for a thermoelastic model problem discretized using a reduced finite element method. The problem is one-way coupled in the sense that heat transfer affects elastic deformation but not vice versa. A reduced model is constructed using component mode synthesis in each of the heat transfer and linear elastic finite element solvers. The error estimate bounds the difference between the reduced and the standard finite element solution in terms of discrete residuals and corresponding dual weights. A main feature with the estimate is that it automatically gives a quantitative measure of the propagation of error between the solvers with respect to a certain computational goal. The analytical results are accompanied by a numerical example.

1. Adaptive reduction of finite element models in computational solid mechanics$(function(){PrimeFaces.cw("OverlayPanel","overlay415741",{id:"formSmash:j_idt670:0:j_idt674",widgetVar:"overlay415741",target:"formSmash:j_idt670:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1106",{id:"formSmash:lower:j_idt1106",widgetVar:"widget_formSmash_lower_j_idt1106",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1107_j_idt1109",{id:"formSmash:lower:j_idt1107:j_idt1109",widgetVar:"widget_formSmash_lower_j_idt1107_j_idt1109",target:"formSmash:lower:j_idt1107:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});