umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Changes in the redox potential of primary and secondary electron-accepting quinones in photosystem II confer increased resistance to photoinhibition in low-temperature-acclimated arabidopsis
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-5151-5184
Show others and affiliations
2003 (English)In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 132, no 4, 2144-2151 p.Article in journal (Refereed) Published
Abstract [en]

Exposure of control (non-hardened) Arabidopsis leaves for 2 h at high irradiance at 5 degreesC resulted in a 55% decrease in photosystem II (PSII) photochemical efficiency as indicated by FcFm. In contrast, cold-acclimated leaves exposed to the same conditions showed only a 22degreesC decrease in FupsilonFm. Thermoluminescence was used to assess the possible role(s) of PSII recombination events in this differential resistance to photoinhibition. Thermoluminescence measurements of PSH revealed that S(2)QA(-) recombination was shifted to higher temperatures, whereas the characteristic temperature of the S(2)Q(B)(-) recombination was shifted to lower temperatures in cold-acclimated plants. These shifts in recombination temperatures indicate higher activation energy for the S(2)Q(A)(-) redox, pair and lower activation energy for the S(2)Q(B) redoxpair. This results in an increase in the free-energy gap between P680(+)Q(A)(-) and P680(+)Pheo(-) and a narrowing of the free energy gap between primary and secondary electron-accepting quinones in PSH electron acceptors. We propose that these effects result in an increased population of reduced primary electron-accepting quinone in PSII, facilitating non-radiative P680(+)QA(-) radical pair recombination. Enhanced reaction center quenching was confirmed using in vivo chlorophyll fluorescence-quenching analysis. The enhanced dissipation of excess light energy within the reaction center of PSII, in part, accounts for the observed increase in resistance to high-light stress in cold-acclimated Arabidopsis plants.

Place, publisher, year, edition, pages
2003. Vol. 132, no 4, 2144-2151 p.
Identifiers
URN: urn:nbn:se:umu:diva-44697DOI: 10.1104/pp.103.022939ISI: 000184713400041OAI: oai:DiVA.org:umu-44697DiVA: diva2:428155
Available from: 2011-06-29 Created: 2011-06-09 Last updated: 2017-12-11

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hurry, VaughanOquist, Gunnar
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Plant Physiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf