umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Secondary structure of NADPH: protochlorophyllide oxidoreductase examined by circular dichroism and prediction methods
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). (Eva Selstam)
1996 (English)In: Biochemical Journal, ISSN 0264-6021, E-ISSN 1470-8728, Vol. 317, no 2, 549-555 p.Article in journal (Refereed) Published
Abstract [en]

To study the secondary structure of the enzyme NADPH:protochlorophyllide oxidoreductase (PCOR), a novel method of enzyme isolation was developed. The detergent isotridecyl poly(ethylene glycol) ether (Genapol X-080) selectively solubilizes the enzyme from a prolamellar-body fraction isolated from wheat (Triticum aestivum L.). The solubilized fraction was further purified by ion-exchange chromatography. The isolated enzyme was studied by fluorescence spectroscopy at 77 K, and by CD spectroscopy. The fluorescence-emission spectra revealed that the binding properties of the substrate and co-substrate were preserved and that photo-reduction occurred. The CD spectra of PCOR were analysed for the relative amounts of the secondary structures, alpha-helix, beta-sheet, turn and random coil. The secondary structure composition was estimated to be 33% alpha-helix, 19% beta-sheet, 20% turn and 28% random coil. These values are in agreement with those predicted by the Predict Heidelberg Deutschland and self-optimized prediction method from alignments methods. The enzyme has some amino acid identity with other NADPH-binding enzymes containing the Rossmann fold. The Rossmann-fold fingerprint motif is localized in the N-terminal region and at the expected positions in the predicted secondary structure. It is suggested that PCOR is anchored to the interfacial region of the membrane by either a beta-sheet or an alpha-helical region containing tryptophan residues. A hydrophobic loop-region could also be involved in membrane anchoring.

Place, publisher, year, edition, pages
1996. Vol. 317, no 2, 549-555 p.
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:umu:diva-44692ISI: A1996UZ33400030OAI: oai:DiVA.org:umu-44692DiVA: diva2:428162
Available from: 2011-06-29 Created: 2011-06-09 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Birve, SimonSelstam, Eva
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Biochemical Journal
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf