umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mitochondria contribute to increased photosynthetic capacity of leaves of winter rye (Secale-Cereale L) following cold-hardening
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-5151-5184
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-5900-7395
Show others and affiliations
1995 (English)In: Plant, Cell and Environment, ISSN 0140-7791, E-ISSN 1365-3040, Vol. 18, no 1, 69-76 p.Article in journal (Refereed) Published
Abstract [en]

Cold-hardening of winter rye (Secale cereale L. cv. Musketeer) increased dark respiration from -2.2 to -3.9 mu mol O-2 m(-2)s(-1) and doubled light- and CO2-saturated photosynthesis at 20 degrees C from 18.1 to 37.0 mu mol O-2 m(-2) s(-1). We added oligomycin at a concentration that specifically inhibits oxidative phosphorylation to see whether the observed increase in dark respiration reflected an increase in respiration in the light, and whether this contributed to the enhanced photosynthesis of cold-hardened leaves, Oligomycin inhibited light- and CO2-saturated rates of photosynthesis in non-hardened and cold-hardened leaves by 14 and 25%, respectively, and decreased photochemical quenching of chlorophyll a fluorescence to a greater degree in cold-hardened than in non-hardened leaves, These data indicate an increase both in the rate of respiration in the light, and in the importance of respiration to photosynthesis following cold-hardening, Analysis of metabolite pools indicated that oligomycin inhibited photosynthesis by limiting regeneration of ribulose-1,5-bisphosphate, This limitation was particularly severe in cold-hardened leaves, and the resulting low 3-phosphoglycerate pools led to a feed-forward inhibition of sucrose-phosphate synthase activity, Thus, it does not appear that oxidative phosphorylation supports the increase in photosynthetic O-2 evolution following cold-hardening by increasing the availability of cytosolic ATP, The data instead support the hypothesis that the mitochondria function in the light by using the reducing equivalents generated by nan-cyclic photosynthetic electron transport.

Place, publisher, year, edition, pages
1995. Vol. 18, no 1, 69-76 p.
Keyword [en]
frost-hardening, low temperature, oligomycin, photoinhibition, respiration, SPS
Identifiers
URN: urn:nbn:se:umu:diva-44677ISI: A1995QE07300008OAI: oai:DiVA.org:umu-44677DiVA: diva2:433631
Available from: 2011-08-10 Created: 2011-06-09 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Hurry, VaughanTobiaeson, MKromer, SGardeström, PerÖquist, Gunnar
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Plant, Cell and Environment

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf