umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
THE EFFECT OF LIGHT QUALITY ON THE INDUCTION OF EFFICIENT PHOTOSYNTHESIS UNDER LOW CO2 CONDITIONS IN CHLAMYDOMONAS-REINHARDTII AND CHLORELLA-PYRENOIDOSA
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-5900-7395
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0003-2133-6526
1994 (English)In: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 92, no 2, 254-260 p.Article in journal (Refereed) Published
Abstract [en]

The effect of blue and red light on the adaptation to low CO2 conditions was studied in high-CO2 grown cultures of Chlorella pyrenoidosa (82T) and Chlamydomonas reinhardtii (137(+)) by measuring O-2 exchange under various inorganic carbon (C-i) concentrations. At equal photosynthetic photon flux density (PPFD), blue light was more favourable for adaptation in both species, compared to red light. The difference in photosynthetic oxygen evolution between cells adapted to low C-i under blue and red light was more pronounced when oxygen evolution was measured under low C-i compared to high C-i conditions. The effect of light quality on adaptation remained for several hours. The different effects caused by blue and red light was observed in C. pyrenoidosa over a wide range of PPFD with increasing differences at increasing PPFD. The maximal difference was obtained at a PPFD above 1 500 mu mol m(-2) s(-1). We found no difference in the extracellular carbonic anhydrase activity between blue- and red light adapted cells. The light quality effect recorded under C-i-limiting conditions in C. reinhardtii cells adapted to air, was only 37% less when instead of pure blue light red light containing 12.5% of blue light (similar PPFD as blue light) was used during adaptation to low carbon. This indicates that in addition to affecting photosynthesis, blue light affected a sensory system involved in algal adaptation to low C-i conditions. Since the affinity for C-i of C. pyrenoidosa and C. reinhardtii cells adapted to air under blue light was higher than that of cells adapted under red light, we suggest that induction of some component(s) of the C-i accumulating mechanism is regulated by the light quality.

Place, publisher, year, edition, pages
1994. Vol. 92, no 2, 254-260 p.
Keyword [en]
ADAPTATION, ALGAE, CHLAMYDOMONAS REINHARDTII, CHLORELLA PYRENOIDOSA, LIGHT QUALITY, LOW C-I, OXYGEN EXCHANGE
Identifiers
URN: urn:nbn:se:umu:diva-44648ISI: A1994PN55800009OAI: oai:DiVA.org:umu-44648DiVA: diva2:434124
Available from: 2011-08-12 Created: 2011-06-09 Last updated: 2017-12-08

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Gardeström, PerSamuelsson, Göran
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Physiologia Plantarum: An International Journal for Plant Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf