umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
EFFECT OF VANADATE ON PHOTOSYNTHESIS AND THE ATP ADP RATIO IN LOW-CO2-ADAPTED CHLAMYDOMONAS-REINHARDTII CELLS
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0002-6002-929X
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-5900-7395
Show others and affiliations
1994 (English)In: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 192, no 1, 46-51 p.Article in journal (Refereed) Published
Abstract [en]

We have assessed the effect of vanadate as an inhibitor of plasma-membrane ATPase on photosynthesis and the ATP/ADP ratio in Chlamydomonas reinhardtii CW-92 (a mutant strain lacking a cell wall). This effect was compared in low-CO2-adapted cells grown in media bubbled with air containing 400 or 70 muL . L-1 CO2. Evidence is presented indicating that cells grown at 70 muL . L-1 CO2 have a higher rate of photosynthetic O2 evolution than cells grown at 400 muL . L-1 CO2, at limiting carbon concentrations. Extracellular and intracellular carbonic-anhydrase activities were, however, similar in cells grown in both of the low-carbon conditions. Vanadate inhibited, to a different extent, the HCO3--dependent O2 evolution in cells grown at 400 and 70 muL . L-1 CO2. At 400 muM vanadate, inhibition reached 70-75 % in cells grown at 400 muL . L-1 but only 50 % in those grown at 70 muL . L-1 CO2. The ATP/ADP ratios determined with and without vanadate at limiting concentrations of dissolved inorganic carbon indicated that more ATP was hydrolysed in algae grown at 70 muL . L-1 than in those grown at 400 muL . L-1 CO2. We conclude that the maximal capacity to accumulate dissolved inorganic carbon is inversely related to the CO2 concentration in the medium. Activation and - or synthesis of vanadate-sensitive ATPase may be the major explanation for the higher capacity for HCO3--dependent O2 evolution in cells grown under limited CO2 concentrations.

Place, publisher, year, edition, pages
1994. Vol. 192, no 1, 46-51 p.
Keyword [en]
ATPASE, CARBON CONCENTRATING MECHANISM, CARBONIC ANHYDRASE, CHLAMYDOMONAS, PHOTOSYNTHESIS
Identifiers
URN: urn:nbn:se:umu:diva-44649ISI: A1994MG36300006OAI: oai:DiVA.org:umu-44649DiVA: diva2:434127
Available from: 2011-08-12 Created: 2011-06-09 Last updated: 2017-12-08

Open Access in DiVA

No full text

Authority records BETA

Karlsson, JanHiltonen, ThomasGardeström, PerSamuelsson, Göran

Search in DiVA

By author/editor
Karlsson, JanHiltonen, ThomasGardeström, PerSamuelsson, Göran
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Planta

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf