Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
University mathematics teachers' views on the required reasoning in calculus exams
Umeå University, Faculty of Science and Technology, Umeå Mathematics Education Research Centre (UMERC). Umeå University, Faculty of Science and Technology, Department of Science and Mathematics Education. (UFM)
2012 (English)In: The Mathematics Enthusiast, E-ISSN 1551-3440, Vol. 9, no 3, p. 371-408Article in journal (Refereed) Published
Abstract [en]

Students often use imitative reasoning, i.e. copy algorithms or recall facts, when solving mathematical tasks. Research show that this type of imitative reasoning might weaken the students' understanding of the underlying mathematical concepts. In a previous study, the author classified tasks from 16 final exams from introductory calculus courses at Swedish universities. The results showed that it was possible to pass 15 of the exams, and solve most of the tasks, using imitative reasoning. This study examines the teachers' views on the reasoning that students are expected to perform during their own and others mathematics exams. The results indicate that the exams demand mostly imitative reasoning since the teachers think that the exams otherwise would be too difficult and lead to too low passing rates.

Place, publisher, year, edition, pages
2012. Vol. 9, no 3, p. 371-408
Keywords [en]
reasoning, creative vs. imitative, Calculus, University Calculus courses, Swedish exams
National Category
Didactics
Research subject
didactics of mathematics
Identifiers
URN: urn:nbn:se:umu:diva-46539OAI: oai:DiVA.org:umu-46539DiVA, id: diva2:438765
Available from: 2011-09-05 Created: 2011-09-05 Last updated: 2024-02-20Bibliographically approved
In thesis
1. Mathematics and mathematics education - two sides of the same coin: creative reasoning in university exams in mathematics
Open this publication in new window or tab >>Mathematics and mathematics education - two sides of the same coin: creative reasoning in university exams in mathematics
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [sv]

Avhandlingen består av två ganska olika delar som ändå har en del gemensamt. Del A är baserad på två artiklar i matematik och del B är baserad på två matematikdidaktiska artiklar.

De matematiska artiklarna utgår från ett begrepp som heter polynomkonvexitet. Grundidén är att man skulle kunna se vissa ytor som en sorts ”tak” (tänk på taket till en carport). Alla punkter, eller positioner, ”under taket” (ungefär som de platser som skyddas från regn av carporttaket) ligger i något som kallas ”polynomkonvexa höljet.” Tidigare forskning har visat att för ett givet tak och en given punkt så finns det ett sätt att avgöra om punkten ligger ”under taket”. Det finns nämligen i så fall alltid en sorts matematisk funktion med vissa egenskaper. Finns det ingen sådan funktion så ligger inte punkten under taket och tvärt om; ligger punkten utanför taket så finns det heller ingen sådan funktion. Jag visar i min första artikel att det kan finnas flera olika sådana funktioner till en punkt som ligger under taket. I den andra artikeln visar jag några exempel på hur man kan konstruera sådana funktioner när man vet hur taket ser ut och var under taket punkten ligger.

De matematikdidaktiska artiklarna i avhandlingen handlar om vad som krävs av studenterna när de gör universitetstentor i matematik. Vissa uppgifter kan gå att lösa genom att studenterna lär sig någonting utantill ur läroboken och sen skriver ner det på tentan. Andra går kanske att lösa med hjälp en algoritm, ett ”recept,” som studenterna har övat på att använda. Båda dessa sätt att resonera kallas imitativt resonemang. Om uppgiften kräver att studenterna ”tänker själva” och skapar en (för dem) ny lösning, så kallas det kreativt resonemang. Forskning visar att elever i stor utsträckning väljer att jobba med imitativt resonemang, även när uppgifterna inte går att lösa på det sättet. Mycket pekar också på att de svårigheter med att lära sig matematik som elever ofta har är nära kopplat till detta arbetssätt. Det är därför viktigt att undersöka i vilken utsträckning de möter olika typer av resonemang i undervisningen. Den första artikeln består av en genomgång av tentauppgifter där det noggrant avgörs vilken typ av resonemang som de kräver av studenterna. Resultatet visar att studenterna kunde bli godkända på nästan alla tentorna med hjälp av imitativt resonemang. Den andra artikeln baserades på intervjuer med sex av de lärare som konstruerat tentorna. Syftet var att ta reda på varför tentorna såg ut som de gjorde och varför det räckte med imitativt resonemang för att klara dem. Det visade sig att lärarna kopplade uppgifternas svårighetsgrad till resonemangstypen. De ansåg att om uppgiften krävde kreativt resonemang så var den svår och att de uppgifter som gick att lösa med imitativt resonemang var lättare. Lärarna menade att under rådande omständigheter, t.ex. studenternas försämrade förkunskaper, så är det inte rimligt att kräva mer kreativt resonemang vid tentamenstillfället.

Abstract [en]

This dissertation consists of two different but connected parts. Part A is based on two articles in mathematics and Part B on two articles in mathematics education.

Part A mainly focus on properties of positive currents in connection to polynomial convexity. Earlier research has shown that a point z0 lies in the polynomial hull of a compact set K if and only if there is a positive current with compact support such that ddcT = μ−δz0. Here μ is a probability measure on K and δz0 denotes the Dirac mass at z0. The main result of Article I is that the current T does not have to be unique. The second paper, Article II, contains two examples of different constructions of this type of currents. The paper is concluded by the proof of a proposition that might be the first step towards generalising the method used in the first example.

Part B consider the types of reasoning that are required by students taking introductory calculus courses at Swedish universities. Two main concepts are used to describe the students’ reasoning: imitative reasoning and creative reasoning. Imitative reasoning consists basically of remembering facts or recalling algorithms. Creative reasoning includes flexible thinking founded on the relevant mathematical properties of ob jects in the task. Earlier research results show that students often choose imitative reasoning to solve mathematical tasks, even when it is not a successful method. In this context the word choose does not necessarily mean that the students make a conscious and well considered selection between methods, but just as well that they have a subconscious preference for certain types of procedures. The research also show examples of how students that work with algorithms seem to focus solely on remembering the steps, and researchers argue that this weakens the students’ understanding of the underlying mathematics. Article III examine to what extent students at Swedish universities can solve exam tasks in introductory calculus courses using only imitative reasoning. The results show that about 70 % of the tasks were solvable by imitative reasoning and that the students were required to use creative reasoning in only one of 16 exams in order to pass. In Article IV, six of the teachers that constructed the analysed exams in Article III were interviewed. The purpose was to examine their views and opinions on the reasoning required in the exams. The analysis showed that the teachers are quite content with the present situation. The teachers expressed the opinion that tasks demanding creative reasoning are usually more difficult than tasks solvable with imitative reasoning. They therefore use the required reasoning as a tool to regulate the tasks’ degree of difficulty, rather than as a task dimension of its own. The exams demand mostly imitative reasoning since the teachers believe that they otherwise would, under the current circumstances, be too difficult and lead to too low passing rates.

Place, publisher, year, edition, pages
Umeå: Matematik och matematisk statistik, 2006. p. 52
Series
Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 36
Keywords
Polynomial convexity, Positive currents, Jensen measures, Mathematical reasoning, assessment, university level
National Category
Didactics
Identifiers
urn:nbn:se:umu:diva-920 (URN)91-7264-208-4 (ISBN)
Public defence
2006-12-01, MA 121, MIT-huset, Umeå Universitet, Umeå, 13:15 (English)
Opponent
Supervisors
Available from: 2006-11-09 Created: 2006-11-09 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

fulltext(511 kB)309 downloads
File information
File name FULLTEXT01.pdfFile size 511 kBChecksum SHA-512
fefdfef4449be9f1b784026f12080162b265a3aed3056d037f9d2223340395ff74c4bd63c92f73bebc5f73835e7ed2a02b0ad28c74e0a9005be89352e5a881a6
Type fulltextMimetype application/pdf

Other links

URL

Authority records

Bergqvist, Ewa

Search in DiVA

By author/editor
Bergqvist, Ewa
By organisation
Umeå Mathematics Education Research Centre (UMERC)Department of Science and Mathematics Education
In the same journal
The Mathematics Enthusiast
Didactics

Search outside of DiVA

GoogleGoogle Scholar
Total: 309 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1568 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf