umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deciphering the rules governing assembly order of mammalian septin complexes
Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
Department of Cell and Molecular Biology, Karolinska Institute, S-171 77 Stockholm, Sweden.
Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
2011 (English)In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 22, no 17, 3152-3164 p.Article in journal (Refereed) Published
Abstract [en]

Septins are conserved GTP-binding proteins that assemble into lateral diffusion barriers and molecular scaffolds. Vertebrate genomes contain 9-17 septin genes that encode both ubiquitous and tissue-specific septins. Expressed septins may assemble in various combinations through both heterotypic and homotypic G-domain interactions. However, little is known regarding assembly states of mammalian septins and mechanisms directing ordered assembly of individual septins into heteromeric units, which is the focus of this study. Our analysis of the septin system in cells lacking or overexpressing selected septins reveals inter-dependencies coinciding with previously described homology subgroups. Hydrodynamic and single-particle data show that individual septins exist solely in the context of stable six-to eight-subunit core heteromers, all of which contain SEPT2 and SEPT6 subgroup members and SEPT7, while heteromers comprising more than six subunits also contain SEPT9. The combined data suggest a generic model for how the temporal order of septin assembly is homology subgroup-directed, which in turn determines the subunit arrangement of native heteromers. Because mammalian cells normally express multiple members and/or isoforms of some septin subgroups, our data also suggest that only a minor fraction of native heteromers are arranged as perfect palindromes.

Place, publisher, year, edition, pages
Bethesda: The Soc., , 2011. Vol. 22, no 17, 3152-3164 p.
National Category
Cell and Molecular Biology
Identifiers
URN: urn:nbn:se:umu:diva-47388DOI: 10.1091/mbc.E11-03-0253OAI: oai:DiVA.org:umu-47388DiVA: diva2:443552
Available from: 2011-09-26 Created: 2011-09-20 Last updated: 2017-12-08
In thesis
1. Cytoskeletal filament systems: assembly, regulation, and interplay in mammalian cells
Open this publication in new window or tab >>Cytoskeletal filament systems: assembly, regulation, and interplay in mammalian cells
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The cell represents the basic unit of structure and function for all life. The interior of a eukaryotic cell is organized by an extensive array of protein filaments – collectively referred to as the cytoskeleton. These filaments serve diverse essential functions, e.g. to provide mechanical resilience, facilitate intracellular transport, and enable cell polarization, locomotion and division. Here I have explored the mechanisms that regulate synthesis and assembly of two cytoskeletal filament systems – microtubules and septins – and how these interact in human cells. The present thesis is based on three principal discoveries. Firstly, we have found that the microtubule-destabilizing protein Op18/Stathmin also regulates synthesis of tubulin heterodimers, which are the building blocks for microtubules. Secondly, we have unraveled the general rules that govern assembly of mammalian septins into native polymerization-competent heterooligomers. Finally, our combined results point to a non-reciprocal interplay whereby interphase microtubules support a disc-like arrangement of septin filaments, which delineate static plasma membrane regions. I here discuss the physiological significance and implications of these findings.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, Institutionen för molekylärbiologi, 2011. 68 p.
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 1450
National Category
Cell and Molecular Biology
Research subject
cellforskning
Identifiers
urn:nbn:se:umu:diva-48508 (URN)978-91-7459-301-3 (ISBN)
Public defence
2011-11-11, Major Groove, Institutionen för Molekylärbiologi, Försörjningsvägen, Byggnad 6L, Umeå Universitet, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2011-10-21 Created: 2011-10-20 Last updated: 2011-10-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sellin, Mikael E.Sandblad, LindaStenmark, SonjaGullberg, Martin

Search in DiVA

By author/editor
Sellin, Mikael E.Sandblad, LindaStenmark, SonjaGullberg, Martin
By organisation
Department of Molecular Biology (Faculty of Medicine)
In the same journal
Molecular Biology of the Cell
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 133 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf