umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Minimum Description Length principle in model selection: An evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysis
Umeå University, Faculty of Social Sciences, Department of Statistics.
Umeå University, Faculty of Social Sciences, Department of Statistics.
2011 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Place, publisher, year, edition, pages
2011.
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:umu:diva-49707OAI: oai:DiVA.org:umu-49707DiVA: diva2:456685
Uppsok
Social and Behavioural Science, Law
Available from: 2011-12-20 Created: 2011-11-15 Last updated: 2012-05-25Bibliographically approved

Open Access in DiVA

fulltext(2654 kB)536 downloads
File information
File name FULLTEXT01.pdfFile size 2654 kBChecksum SHA-512
5d084ef2c3f33bed74963d278f0dbbc0e8c67a675bb9c57a4c6b8d609e5fc83240a5fa416914a0dcc25e665618e170092c151e913c7160edcd4412acae2aa4e7
Type fulltextMimetype application/pdf

By organisation
Department of Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 536 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 198 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf