umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Primary motor cortex underlies multi-joint integration for fast feedback control
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Queen’s University, Kingston, Ontario.
New York College of Osteopathic Medicine, Queen’s University, Kingston, Ontario, New York College of Osteopathic Medicine, Old Westbury, New York.
Queen’s University, Kingston, Ontario.
Queen’s University, Kingston, Ontario.
Show others and affiliations
2011 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 478, no 7369, 387-390 p.Article in journal (Refereed) Published
Abstract [en]

A basic difficulty for the nervous system is integrating locally ambiguous sensory information to form accurate perceptions about the outside world(1-4). This local-to-global problem is also fundamental to motor control of the arm, because complex mechanical interactions between shoulder and elbow allow a particular amount of motion at one joint to arise from an infinite combination of shoulder and elbow torques(5). Here we show, in humans and rhesus monkeys, that a transcortical pathway through primary motor cortex (M1) resolves this ambiguity during fast feedback control. We demonstrate that single M1 neurons of behaving monkeys can integrate shoulder and elbow motion information into motor commands that appropriately counter the underlying torque within about 50 milliseconds of a mechanical perturbation. Moreover, we reveal a causal link between M1 processing and multi-joint integration in humans by showing that shoulder muscle responses occurring 50 milliseconds after pure elbow displacement can be potentiated by transcranial magnetic stimulation. Taken together, our results show that transcortical processing through M1 permits feedback responses to express a level of sophistication that rivals voluntary control; this provides neurophysiological support for influential theories positing that voluntary movement is generated by the intelligent manipulation of sensory feedback(6,7).

Place, publisher, year, edition, pages
London: Macmillan Journals , 2011. Vol. 478, no 7369, 387-390 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:umu:diva-49552DOI: 10.1038/nature10436ISI: 000296021100046OAI: oai:DiVA.org:umu-49552DiVA: diva2:458276
Available from: 2011-11-22 Created: 2011-11-14 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Pruszynski, J. Andrew
By organisation
Physiology
In the same journal
Nature
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 126 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf