Change search
ReferencesLink to record
Permanent link

Direct link
DNA building blocks: keeping control of manufacture
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
2012 (English)In: Critical reviews in biochemistry and molecular biology, ISSN 1040-9238, E-ISSN 1549-7798, Vol. 47, no 1, 50-63 p.Article in journal (Refereed) Published
Abstract [en]

Ribonucleotide reductase (RNR) is the only source for de novo production of the four deoxyribonucleoside triphosphate (dNTP) building blocks needed for DNA synthesis and repair. It is crucial that these dNTP pools are carefully balanced, since mutation rates increase when dNTP levels are either unbalanced or elevated. RNR is the major player in this homeostasis, and with its four different substrates, four different allosteric effectors and two different effector binding sites, it has one of the most sophisticated allosteric regulations known today. In the past few years, the structures of RNRs from several bacteria, yeast and man have been determined in the presence of allosteric effectors and substrates, revealing new information about the mechanisms behind the allosteric regulation. A common theme for all studied RNRs is a flexible loop that mediates modulatory effects from the allosteric specificity site (s-site) to the catalytic site for discrimination between the four substrates. Much less is known about the allosteric activity site (a-site), which functions as an on-off switch for the enzyme's overall activity by binding ATP (activator) or dATP (inhibitor). The two nucleotides induce formation of different enzyme oligomers, and a recent structure of a dATP-inhibited α(6)β(2) complex from yeast suggested how its subunits interacted non-productively. Interestingly, the oligomers formed and the details of their allosteric regulation differ between eukaryotes and Escherichia coli. Nevertheless, these differences serve a common purpose in an essential enzyme whose allosteric regulation might date back to the era when the molecular mechanisms behind the central dogma evolved.

Place, publisher, year, edition, pages
London: Informa Healthcare, 2012. Vol. 47, no 1, 50-63 p.
Keyword [en]
Ribonucleotide reductase, RNR, allosteric regulation, specificity site, activity site, ATP cone, dATP inhibition
National Category
Biochemistry and Molecular Biology
URN: urn:nbn:se:umu:diva-50091DOI: 10.3109/10409238.2011.630372PubMedID: 22050358OAI: diva2:459185
Available from: 2011-11-25 Created: 2011-11-25 Last updated: 2012-01-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Hofer, Anders
By organisation
Department of Medical Biochemistry and Biophysics
In the same journal
Critical reviews in biochemistry and molecular biology
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 91 hits
ReferencesLink to record
Permanent link

Direct link