umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Computing codimensions and generic canonical forms for generalized matrix products
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (UMIT)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (UMIT)ORCID-id: 0000-0002-4675-7434
2011 (Engelska)Ingår i: The Electronic Journal of Linear Algebra, ISSN 1537-9582, E-ISSN 1081-3810, Vol. 22, s. 277-309Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A generalized matrix product can be formally written as Lambda(sp)(p) Lambda(sp-1)(p-1) ... Lambda(s2)(2) Lambda(s1)(1) where s(i) is an element of {- 1,+ 1} and ( A(1), ..., A(p)) is a tuple of ( possibly rectangular) matrices of suitable dimensions. The periodic eigenvalue problem related to such a product represents a nontrivial extension of generalized eigenvalue and singular value problems. While the classification of generalized matrix products under eigenvalue-preserving similarity transformations and the corresponding canonical forms have been known since the 1970's, finding generic canonical forms has remained an open problem. In this paper, we aim at such generic forms by computing the codimension of the orbit generated by all similarity transformations of a given generalized matrix product. This can be reduced to computing the so called cointeractions between two different blocks in the canonical form. A number of techniques are applied to keep the number of possibilities for different types of cointeractions limited. Nevertheless, the matter remains highly technical; we therefore also provide a computer program for finding the codimension of a canonical form, based on the formulas developed in this paper. A few examples illustrate how our results can be used to determine the generic canonical form of least codimension. Moreover, we describe an algorithm and provide software for extracting the generically regular part of a generalized matrix product.

Ort, förlag, år, upplaga, sidor
2011. Vol. 22, s. 277-309
Nyckelord [en]
matrix product, periodic eigenvalue problem, canonical form, generic kronecker
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-51038ISI: 000288598500005OAI: oai:DiVA.org:umu-51038DiVA, id: diva2:474332
Tillgänglig från: 2012-01-09 Skapad: 2012-01-09 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

URL

Personposter BETA

Kågström, BoKarlsson, Lars

Sök vidare i DiVA

Av författaren/redaktören
Kågström, BoKarlsson, Lars
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
The Electronic Journal of Linear Algebra
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 205 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf