umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt156",{id:"formSmash:upper:j_idt156",widgetVar:"widget_formSmash_upper_j_idt156",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt157_j_idt159",{id:"formSmash:upper:j_idt157:j_idt159",widgetVar:"widget_formSmash_upper_j_idt157_j_idt159",target:"formSmash:upper:j_idt157:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The plurisubharmonic Mergelyan propertyPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)Doctoral thesis, monograph (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå Universitet , 2012. , 94 p.
##### Series

Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 52
##### Keyword [en]

Complex Monge-Ampère operator, approximation, plurisubharmonic function, subextension, Mergelyan property, plurisubharmonic function on compact sets, Jensen measures
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-52229ISBN: 978-91-7459-364-8 (print)OAI: oai:DiVA.org:umu-52229DiVA: diva2:501418
##### Public defence

2012-03-09, MIT-huset, MA121, Umeå universitet, Umeå, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt449",{id:"formSmash:j_idt449",widgetVar:"widget_formSmash_j_idt449",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt456",{id:"formSmash:j_idt456",widgetVar:"widget_formSmash_j_idt456",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt462",{id:"formSmash:j_idt462",widgetVar:"widget_formSmash_j_idt462",multiple:true});
Available from: 2012-02-17 Created: 2012-02-14 Last updated: 2012-02-14Bibliographically approved

In this thesis, we study two different kinds of approximation of plurisubharmonic functions.

The first one is a Mergelyan type approximation for plurisubharmonic functions. That is, we study which domains in C^n have the property that every continuous plurisubharmonic function can be uniformly approximated with continuous and plurisubharmonic functions defined on neighborhoods of the domain. We will improve a result by Fornaess and Wiegerinck and show that domains with C^0-boundary have this property. We will also use the notion of plurisubharmonic functions on compact sets when trying to characterize those continuous and plurisubharmonic functions that can be approximated from outside. Here a new kind of convexity of a domain comes in handy, namely those domains in C^n that have a negative exhaustion function that is plurisubharmonic on the closure. For these domains, we prove that it is enough to look at the boundary values of a plurisubharmonic function to know whether it can be approximated from outside.

The second type of approximation is the following: we want to approximate functions u that are defined on bounded hyperconvex domains Omega in C^n and have essentially boundary values zero and bounded Monge-Ampère mass, with increasing sequences of certain functions u_j that are defined on strictly larger domains. We show that for certain conditions on Omega, this is always possible. We also generalize this to functions with given boundary values. The main tool in the proofs concerning this second approximation is subextension of plurisubharmonic functions.

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1166",{id:"formSmash:j_idt1166",widgetVar:"widget_formSmash_j_idt1166",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1219",{id:"formSmash:lower:j_idt1219",widgetVar:"widget_formSmash_lower_j_idt1219",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1220_j_idt1222",{id:"formSmash:lower:j_idt1220:j_idt1222",widgetVar:"widget_formSmash_lower_j_idt1220_j_idt1222",target:"formSmash:lower:j_idt1220:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});