umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Generalized linear models with clustered data
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik.
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In situations where a large data set is partitioned into many relatively small groups, and where the members within a group have some common unmeasured characteristics, the number of parameters requiring estimation tends to increase with sample size if a fixed effects model is applied. This fact causes the assumptions underlying asymptotic results to be violated.

The first paper in this thesis considers two possible solutions to this problem, a random intercepts model and a fixed effects model, where asymptotics are replaced by a simple form of bootstrapping. A profiling approach is introduced in the fixed effects case, which makes it computationally efficient even with a huge number of groups. The grouping effect is mainly seen as a nuisance in this paper.

In the second paper the effect of misspecifying the distribution of the random effects in a generalized linear mixed model for binary data is studied. One problem with mixed effects models is that the distributional assumptions about the random effects are not easily checked from real data. Models with Gaussian, logistic and Cauchy distributional assumptions are used for parameter estimation on data simulated using the same three distributions. The eect of these assumptions on parameter estimation is presented. Two criteria for model selection are investigated, the Akaike information criterion and a criterion based on a X2 statistic. The estimators for fixed effects parameters are quite robust against misspecification of the random effects distribution, at least with the distributions used in this paper. Even when the true random effects distribution is Cauchy, models assuming a Gaussian or a logistic distribution regularly produce estimates with less bias.

In the third paper the results from the first two papers are applied to infant mortality data. We found that there was significant clustering of infant mortality in the Skellefteå region in the years 1831-1890. An "ad hoc" method for comparing the magnitude of unexplained clustering after a model is applied is also presented.

The last paper of this thesis is concerned with the problem of testing for spatial clustering caused by autocorrelation. A test that is robust against heteroscedasticity is proposed. In a simulation study the properties of the proposed statistic, K, are investigated. The power of the test based on K is compared to that of Moran's I in the simulation study. Both tests are then applied to mortality data from Swedish municipalities.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet , 2012. , s. 25
Serie
Statistical studies, ISSN 1100-8989 ; 46
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-52902ISBN: 978-91-7459-378-5 (tryckt)OAI: oai:DiVA.org:umu-52902DiVA, id: diva2:507527
Disputation
2012-03-30, Norra Beteendevetarhuset, HS1031, Umeå universitet, Umeå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2012-03-09 Skapad: 2012-03-05 Senast uppdaterad: 2018-06-08Bibliografiskt granskad
Delarbeten
1. Generalized linear models with clustered data: fixed and random effects models
Öppna denna publikation i ny flik eller fönster >>Generalized linear models with clustered data: fixed and random effects models
2011 (Engelska)Ingår i: Computational Statistics & Data Analysis, ISSN 0167-9473, E-ISSN 1872-7352, Vol. 55, nr 12, s. 3123-3134Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The statistical analysis of mixed effects models for binary and count data is investigated. In the statistical computing environment R, there are a few packages that estimate models of this kind. The packagelme4 is a de facto standard for mixed effects models. The packageglmmML allows non-normal distributions in the specification of random intercepts. It also allows for the estimation of a fixed effects model, assuming that all cluster intercepts are distinct fixed parameters; moreover, a bootstrapping technique is implemented to replace asymptotic analysis. The random intercepts model is fitted using a maximum likelihood estimator with adaptive Gauss–Hermite and Laplace quadrature approximations of the likelihood function. The fixed effects model is fitted through a profiling approach, which is necessary when the number of clusters is large. In a simulation study, the two approaches are compared. The fixed effects model has severe bias when the mixed effects variance is positive and the number of clusters is large.

Nyckelord
Bernoulli distribution, Gauss-Hermite quadrature, Laplace approximation, Implicit derivation, Profiling, Poisson distribution
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
urn:nbn:se:umu:diva-40018 (URN)10.1016/j.csda.2011.06.011 (DOI)
Forskningsfinansiär
Riksbankens Jubileumsfond, 2005-0488
Tillgänglig från: 2011-02-14 Skapad: 2011-02-14 Senast uppdaterad: 2018-06-08Bibliografiskt granskad
2. Generalised linear models with clustered data: robustness against a misspecified random effects distribution
Öppna denna publikation i ny flik eller fönster >>Generalised linear models with clustered data: robustness against a misspecified random effects distribution
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
urn:nbn:se:umu:diva-40019 (URN)
Tillgänglig från: 2011-02-14 Skapad: 2011-02-14 Senast uppdaterad: 2018-06-08Bibliografiskt granskad
3. On statistical methods for clustering: a case study on infant mortality, northern Sweden 1831-1890
Öppna denna publikation i ny flik eller fönster >>On statistical methods for clustering: a case study on infant mortality, northern Sweden 1831-1890
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
urn:nbn:se:umu:diva-52900 (URN)
Tillgänglig från: 2012-03-05 Skapad: 2012-03-05 Senast uppdaterad: 2018-06-08Bibliografiskt granskad
4. A new test for spatial autocorrelation with an application to mortality in Swedish municipalities
Öppna denna publikation i ny flik eller fönster >>A new test for spatial autocorrelation with an application to mortality in Swedish municipalities
2012 (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
urn:nbn:se:umu:diva-52901 (URN)
Tillgänglig från: 2012-03-05 Skapad: 2012-03-05 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

fulltext(492 kB)2635 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 492 kBChecksumma SHA-512
9ed59ed68fe145a6e959005b56f0ab6271e046082bf092e9f02b728fe54b60a695b15123ffb1aa5f6af14e2eef89fb38eac7ecbda53ff577422af5ebcdbdcc5f
Typ fulltextMimetyp application/pdf

Personposter BETA

Holmberg, Henrik

Sök vidare i DiVA

Av författaren/redaktören
Holmberg, Henrik
Av organisationen
Statistik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 2635 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 491 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf