Change search
ReferencesLink to record
Permanent link

Direct link
A mechanism for heating electrons in the magnetopause current layer and adjacent regions
Show others and affiliations
2011 (English)In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 29, no 12, 2305-2316 p.Article in journal (Refereed) Published
Abstract [en]

Taking advantage of the string-of-pearls configuration of the five THEMIS spacecraft during the early phase of their mission, we analyze observations taken simultaneously in the magnetosheath, the magnetopause current layer and the magnetosphere. We find that electron heating coincides with ultra low frequency waves. It seems unlikely that electrons are heated by these waves because the electron thermal velocity is much larger than the Alfven velocity (V-a). In the short transverse scale (k (perpendicular to) rho(i) >> 1) regime, however, short scale Alfven waves (SSAWs) have parallel phase velocities much larger than V-a and are shown to interact, via Landau damping, with electrons thereby heating them. The origin of these waves is also addressed. THEMIS data give evidence for sharp spatial gradients in the magnetopause current layer where the highest amplitude waves have a large component delta B perpendicular to the magnetopause and k azimuthal. We suggest that SSAWs are drift waves generated by temperature gradients in a high beta, large T-i/T-e magnetopause current layer. Therefore these waves are called SSDAWs, where D stands for drift. SSDAWs have large k(perpendicular to) and therefore a large Doppler shift that can exceed their frequencies in the plasma frame. Because they have a small but finite parallel electric field and a magnetic component perpendicular to the magnetopause, they could play a key role at reconnecting magnetic field lines. The growth rate depends strongly on the scale of the gradients; it becomes very large when the scale of the electron temperature gradient gets below 400 km. Therefore SSDAW's are expected to limit the sharpness of the gradients, which might explain why Berchem and Russell (1982) found that the average magnetopause current sheet thickness to be similar to 400-1000 km (similar to 500 km in the near equatorial region).

Place, publisher, year, edition, pages
2011. Vol. 29, no 12, 2305-2316 p.
Keyword [en]
Magnetospheric physics, Magnetopause, cusp, and boundary layers, Magnetosheath, Space plasma physics, Wave-particle interactions
National Category
Astronomy, Astrophysics and Cosmology Geosciences, Multidisciplinary Meteorology and Atmospheric Sciences
URN: urn:nbn:se:umu:diva-53897DOI: 10.5194/angeo-29-2305-2011ISI: 000298657700011OAI: diva2:514024
Available from: 2012-04-04 Created: 2012-04-04 Last updated: 2012-04-04Bibliographically approved

Open Access in DiVA

A mechanism for heating electrons in the magnetopause current(4788 kB)80 downloads
File information
File name FULLTEXT02.pdfFile size 4788 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Cully, C. M.
By organisation
Department of Physics
In the same journal
Annales Geophysicae
Astronomy, Astrophysics and CosmologyGeosciences, MultidisciplinaryMeteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 80 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 36 hits
ReferencesLink to record
Permanent link

Direct link