Change search
ReferencesLink to record
Permanent link

Direct link
Cytotoxic properties of transthyretin as a function of thermodynamic and kinetic stability
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
(English)Manuscript (preprint) (Other academic)
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
URN: urn:nbn:se:umu:diva-54052OAI: diva2:515384
Available from: 2012-04-12 Created: 2012-04-12 Last updated: 2012-04-13Bibliographically approved
In thesis
1. Targeting cytotoxic species in amyloid diseases
Open this publication in new window or tab >>Targeting cytotoxic species in amyloid diseases
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Amyloid diseases are a world-wide problem causing great human suffer and large economical costs. Although amyloid deposits, a common denominator in all amyloid disorders, are detrimental to the surrounding tissue, there is a poor correlation between total amyloid burden and clinical symptoms. Soluble oligomers are much more potent to exert a tissue damaging effect. 

Alzheimer’s disease (AD) is strongly linked to self-assembly of the amyloid-β (Aβ) peptide. Antibodies selectively targeting cytotoxic Aβ-species are useful both for understanding oligomer formation and for their therapeutic abilities. We hypothesized that the effect of avidity would compensate for a low single site affinity and be enough to selectively target oligomers. To evaluate this hypothesis, we focused on the IgM isotype having ten antigen-binding sites. In accordance with the hypothesis, the IgM isotype effectively bound oligomeric Aβ also in presence of a vast excess of its monomeric counterpart, clearly illustrating the potentiating effect of avidity. As a continuation of this work, we have shown that the avidity effect from a bivalent binding is enough to induce oligomer specificity. This finding facilitates a direct application on the clinically more useful IgG isotype, where the binding properties now can be controlled in detail. The method is general and we have, using this technique, also designed oligomer specific antibodies targeting α-synuclein.

Transthyretin (TTR) is an amyloidogenic protein involved in both hereditary and sporadic amyloidosis. The cytotoxicity of TTR is intriguing since studies have shown cytotoxic potential from oligomers, tetramers and even monomers. Elucidation of the molecular properties associated with TTR cytotoxicity is hence of interest. By preventing tetramer dissociation, TTR aggregation and TTR-induced cytotoxicity is abolished. Based on this rationale, a current therapeutic strategy is to stabilize the TTR tetramer with small molecules. The kinetic stability within the spectra of known TTR mutations spans more than three orders of magnitude. However, although the most stable mutants are inert, a poor correlation within the group of cytotoxic variants exists where the cytotoxic effect is not potentiated in proportion to their kinetic stability. Through analysis of a large spectra of TTR variants, our results indicate that TTR induced cytotoxicity requires an intermediate stability of the TTR molecule. The kinetic stability should be low enough to permit tetramer dissociation and the thermodynamic stability high enough to prevent instant aggregation and to allow formation of the cytotoxic fold. 

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2012. 63 p.
Umeå University medical dissertations, ISSN 0346-6612 ; 1494
Alzheimer's disease, Amyloid-beta, transthyretin, FAP, amyloid, cytotoxic species, oligomers
National Category
Cell and Molecular Biology Other Basic Medicine
Research subject
Medical Biochemistry
urn:nbn:se:umu:diva-54006 (URN)978-91-7459-414-0 (ISBN)
Public defence
2012-05-04, KB3A9, KBC, Umeå universitet, Umeå, 10:00 (English)
Available from: 2012-04-12 Created: 2012-04-11 Last updated: 2012-04-12Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Lindhagen Persson, MalinOlofsson, Anders
By organisation
Department of Medical Biochemistry and Biophysics
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 67 hits
ReferencesLink to record
Permanent link

Direct link