umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Shedding light on the operation of polymer light-emitting electrochemical cells using impedance spectroscopy
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
2012 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 22, no 7, 1511-1517 p.Article in journal (Refereed) Published
Abstract [en]

A combination of impedance spectroscopy, device characterization, and modeling is used to pinpoint key processes in the operation of polymer light-emitting electrochemical cells (LECs). At low applied voltage, electric double layers with a thickness of similar to 23 nm are shown to exist at the electrode interfaces. At voltages exceeding the bandgap potential of the conjugated polymer (V = 2.5 V for superyellow), a light-emitting pn junction forms in situ, with a steady-state structure that is found to depend strongly on the applied voltage. This is exemplified by that the effective pn junction thickness (dpn) for a device with an interelectrode gap of 90 nm decreases from similar to 23 nm at 2.5 V to similar to 6 nm at 3.9 V. The current increases with decreasing dpn in a concerted manner, while the brightness reaches its peak at V = 3.4 V when dpn similar to 10 nm. The existence of an optimum dpn for high brightness in LECs is attributed to an offset between an increase in the exciton formation rate with decreasing dpn, due to an increasing current, and a simultaneous decrease in the exciton radiative decay rate, when an increasing fraction of excitons diffuses away from the pn junction into the surrounding non-radiative doping regions.

Place, publisher, year, edition, pages
2012. Vol. 22, no 7, 1511-1517 p.
Keyword [en]
light-emitting electrochemical cells, impedance spectroscopy, electric double layers, dynamic p-n junctions, equivalent circuits
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-55021DOI: 10.1002/adfm.201102687ISI: 000302346400020OAI: oai:DiVA.org:umu-55021DiVA: diva2:525782
Available from: 2012-05-09 Created: 2012-05-07 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sandström, AndreasTang, ShiEdman, Ludvig

Search in DiVA

By author/editor
Munar, AntoniSandström, AndreasTang, ShiEdman, Ludvig
By organisation
Department of Physics
In the same journal
Advanced Functional Materials
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 135 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf