Change search
ReferencesLink to record
Permanent link

Direct link
Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa
Show others and affiliations
2012 (English)In: International Journal of Health Geographics, ISSN 1476-072X, Vol. 11, 8- p.Article in journal (Refereed) Published
Abstract [en]

Introduction: The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods: A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results: The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions: Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming.

Place, publisher, year, edition, pages
London: BioMed Central, 2012. Vol. 11, 8- p.
Keyword [en]
Remote sensing, High spatial resolution, SPOT 5 satellite, Malaria, Rural West Africa, Burkina Faso, Geographic information system, Digital elevation model, MODIS, TRMM
National Category
Public Health, Global Health, Social Medicine and Epidemiology
URN: urn:nbn:se:umu:diva-55530DOI: 10.1186/1476-072X-11-8ISI: 000303155300001OAI: diva2:528503
Available from: 2012-05-25 Created: 2012-05-21 Last updated: 2012-05-25Bibliographically approved

Open Access in DiVA

fulltext(1602 kB)154 downloads
File information
File name FULLTEXT02.pdfFile size 1602 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Sauerborn, Rainer
By organisation
Epidemiology and Global Health
In the same journal
International Journal of Health Geographics
Public Health, Global Health, Social Medicine and Epidemiology

Search outside of DiVA

GoogleGoogle Scholar
Total: 154 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link