umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Palladium nanocrystals supported on helical carbon nanofibers for highly efficient electro-oxidation of formic acid, methanol and ethanol in alkaline electrolytes
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2012 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 209, 236-242 p.Article in journal (Refereed) Published
Abstract [en]

We present the synthesis of palladium nanocrystals self-assembled on helical carbon nanofibers functionalized with benzyl mercaptan (Pd-S-HCNFs) and their electrocatalytic activity toward the oxidation of formic acid, methanol and ethanol. Helical carbon nanofibers (HCNFs) were first functionalized with benzyl mercaptan based on the pi-pi interactions between phenyl rings and the graphitic surface of HCNFs. Palladium nano crystals (PdNC) were fixed on the surface of functionalized HCNF by Pd-S bonds in a simple self-assembly method. The as-prepared materials were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV), and fuel cell tests. CV characterization of the as-prepared materials shows a very high electrocatalytic activity for oxidation of formic acid, ethanol and methanol in strong alkaline electrolyte. In comparison to commercial catalyst Vulcan XC-72 decorated with Pd nanoparticles, the proposed Pd-S-HCNFs nano composite material shows oxidation currents for formic acid, ethanol and methanol at the Pd-S-HCNF-modified electrode that are higher than that at the Pd/XC-72 modified electrode with a factor of 2.0, 1.5, and 2.3, respectively. In a formic acid fuel cell the Pd-S-HCNF modified electrode yields equal power density as commercial Pd/XC-72 catalyst. Our results show that Pd-decorated helical carbon nanofibers with diameters around 40-60 nm have very high potential as active material in fuel cells, electrocatalysts and sensors. (C) 2012 Elsevier B.V All rights reserved.

Place, publisher, year, edition, pages
2012. Vol. 209, 236-242 p.
Keyword [en]
Helical carbon fibers, Electrocatalysts, Palladium, Nanoparticles, Electron microscopy, Fuel cells
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-56189DOI: 10.1016/j.jpowsour.2012.02.080ISI: 000303698800031OAI: oai:DiVA.org:umu-56189DiVA: diva2:532888
Funder
Knut and Alice Wallenberg FoundationSwedish Research Council, dnr-2010 3973
Note
Funding Agency: Magnus Bergvalls stiftelse, Kempestiftelsen, Wenner-Gren stiftelsen, Polish Ministry of Science and Higher Education through NCN  2011/01/B/STS/03888, Ångpanneforeningen, Gustaf Richerts stiftelse.   Available from: 2012-06-12 Created: 2012-06-12 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Synthesis and characterization of palladium based carbon nanostructure-composites and their clean-energy application
Open this publication in new window or tab >>Synthesis and characterization of palladium based carbon nanostructure-composites and their clean-energy application
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Carbon nanostructures are a wide field with many applications. The use of carbon nanostructures as support in heterogeneous catalysis is a key development that led together with the use of nanoparticles to a significant cost reduction of catalysts. Catalysts designed in this way are widely applied in fuel cell technologies. For portable devices especially low temperature fuel cells are desirable with low hazards for the user. One technology which fulfills these requirements is the direct formic acid fuel cell (DFAFC). DFAFC have many promising characteristics, such as high electromotive force and easy fuel handling. However, they still suffer from too low power output and lifetime for commercialization.

This thesis focusses on two main aspects: the synthesis of carbon nanostructures by chemical vapor deposition (CVD) and their application as catalyst support. The materials are investigated by many different techniques ranging from transmission electron microscopy (TEM) to fuel cell tests.

Different carbon nanostructures could be synthesized by catalytic CVD on palladium (Pd) nanoparticles. Multi-walled carbon nanotubes (MWCNTs), carbon nanofibers (CNFs) and helical carbon nanofibers (HCNFs) were grown, selectively, dependent on temperature, using acetylene as carbon precursor. Especially HCNF raised further interest due to their unique structure. A growth model for HCNFs was developed based on an anisotropic extrusion model. The synthesis conditions for HCNFs were optimized until an almost 100 % purity with very high efficiency was obtained.

The unique helical but fiber-like structure made the material very interesting as support for heterogeneous catalysis. Several catalysts based on Pd nanoparticle decorated HCNFs were developed. The synthesis methods ranged from standard methods like the polyol method to phase-transfer methods. The catalysts showed very promising results for the electro-oxidation of methanol, ethanol and formic acid. This makes them highly attractive for fuel cell applications. The catalysts were tested in DFAFC. The superiority of HCNF-based catalysts is attributed to the good attachment of nanoparticles to the defect-rich and easy to functionalize surface of HCNFs in combination with adequate film forming properties during electrode preparation.

Abstract [sv]

Nanostrukturerat kol är ett mycket brett fält med ett stort antal tillämpningar. Användning av kolnanostrukturer som support för heterogena katalysmaterial har tillsammans med utvecklingen av nanopartiklar lett till en avsevärd minskning av kostnaden för katalysatorer. Katalysatorer designade på detta sätt används frekvent i bränsleceller. För portabla tillämpningar är utvecklingen av säkra och miljövänliga lågtemperaturceller mycket viktig. En teknologi som uppfyller dessa kriterier är bränsleceller som drivs med myrsyra (DFAFC). Sådana bränsleceller har många önskvärda egenskaper, såsom en hög elektromotorisk kraft och en enkel hantering av bränslet. Trots dessa goda egenskaper har de också en del nackdelar som hindrar en full kommersialisering. De två mest problematiska är en för låg genererad effekt samt en för kort livslängd på katalysatorerna.

Denna avhandling fokuserar på två huvudpunkter som adresserar dessa problem; tillverkning och karaktärisering av kolnanostrukturer producerade med CVD, och deras tillämpningar som support för katalysatorer. Materialen karaktäriseras med en rad olika tekniker, allt från transmission-elektronmikroskopi till bränslecellstester.

Olika kolnanostrukturer har syntetiserats med katalytisk CVD på palladium (Pd) nanopartiklar. Produktionen av flerväggiga kolnanorör, kolfibrer och heliska kolnanofibrer har tillverkats med acetylen som kolkälla och genom att variera temperaturen kunde innehållet av olika typer av nanostrukturerat kol kontrolleras. Särskilt stort intresse har de heliska kolnanofibrerna rönt på grund av deras unika struktur. Vi beskriver en tillväxtmekanism baserad på en anisotrop diffusionsmodell. Genom att justera produktionsparametrarna visar vi att heliska kolnanofibrer kunde tillverkas med nära 100 %-ig renhet och hög effektivitet.

Den unika heliska och fiberlika strukturen är mycket intressant for tillämpningar som support för heterogena katalysatorer. Ett flertal kompositer för katalytiska tillämpningar har utvecklats baserade på heliska kolnanofibrer, dekorerade med heterogena katalysatorer genom en rad olika kemiska/fysikaliska tekniker. De syntetiserade materialen visar mycket goda katalytiska egenskaper för att oxidera metanol, etanol och myrsyra. Därigenom blir de mycket attraktiva för användning i bränsleceller. Vi korrelerar de goda katalytiska egenskaperna med en bra vidhäftning av nanopartiklarna på de heliska kolnanofibrerna defekter, deras goda ledningsförmåga, bra egenskaper för att förbereda elektroder, samt deras stora yta i förhållande till deras volym och vikt.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2013. 66 p.
Keyword
Carbon nanostructures, chemical vapour deposition, electro catalysts, transmission electron microscopy, direct formic acid fuel cells
National Category
Condensed Matter Physics
Research subject
Solid State Physics
Identifiers
urn:nbn:se:umu:diva-68852 (URN)digital version: 978-91-7459-632-8 (ISBN)printed version:978-91-7459-631-1 (ISBN)
Public defence
2013-05-31, Naturvetarhuset, N450, Umeå Universitet, Umeå, 13:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg FoundationSwedish Research Council
Available from: 2013-05-07 Created: 2013-04-26 Last updated: 2013-04-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hu, GuangzhiNitze, FlorianBarzegar, Hamid RezaSharifi, TivaWågberg, Thomas
By organisation
Department of Physics
In the same journal
Journal of Power Sources
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1697 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf