Change search
ReferencesLink to record
Permanent link

Direct link
Fatty acids bind tightly to the N-terminal domain of angiopoietin-like protein 4 and modulate its interaction with lipoprotein lipase
Umeå University, Faculty of Medicine, Department of Medical Biosciences, Physiological chemistry.
Umeå University, Faculty of Medicine, Department of Medical Biosciences, Physiological chemistry.
Show others and affiliations
2012 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 287, no 35, 29739-29752 p.Article in journal (Refereed) Published
Abstract [en]

Angiopoietin-like protein 4 (Angptl4), a potent regulator of plasma triglyceride metabolism, binds to lipoprotein lipase (LPL) through its N-terminal coiled-coil domain (ccd-Angptl4) inducing dissociation of the dimeric enzyme to inactive monomers. In the present study we demonstrate that fatty acids reduce the inactivation of LPL by Angptl4. This was the case both with ccd-Angptl4 and full length Angptl4 and the effect was seen in human plasma or in the presence of albumin. The effect decreased in the sequence oleic acid > palmitic acid > myristic acid >linoleic acid >linolenic acid. Surface plasmon resonance, isothermal titration calorimetry, fluorescence and chromatography measurements revealed that fatty acids bind with high affinity to ccd-Angptl4. The interactions were characterized by fast association and slow dissociation rates, indicating formation of stable complexes. The highest affinity for ccd-Angptl4 was detected for oleic acid with a sub-nanomolar equilibrium dissociation constant (Kd). The Kd values for palmitic and myristic acid were in nanomolar range. Linoleic and linolenic acid bound with much lower affinity. On binding of fatty acids, ccd-Angptl4 underwent conformational changes resulting in a decreased helical content, weakened structural stability, dissociation of oligomers, and altered fluorescence properties of the Trp38 residue which is located close to the putative LPL-binding region. Based on these results, we propose that fatty acids play an important role in modulating the effects of Angptl4.

Place, publisher, year, edition, pages
Bethesda: American Society for Biochemistry and Molecular Biology, 2012. Vol. 287, no 35, 29739-29752 p.
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
URN: urn:nbn:se:umu:diva-57336DOI: 10.1074/jbc.M111.303529ISI: 000308286900050PubMedID: 22773878OAI: diva2:541041
Available from: 2012-07-13 Created: 2012-07-13 Last updated: 2014-08-13Bibliographically approved
In thesis
1. Endogenous and exogenous factors affecting lipoprotein lipase activity
Open this publication in new window or tab >>Endogenous and exogenous factors affecting lipoprotein lipase activity
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Individuals with high levels of plasma triglycerides are at high risk to develop cardiovascular disease (CVD), currently one of the major causes of death worldwide. Recent epidemiological studies show that loss-of-function mutations in the APOC3 gene lower plasma triglyceride levels and reduce the incidence of coronary artery disease. The APOC3 gene encodes for apolipoprotein (APO) C3, known as an inhibitor of lipoprotein lipase (LPL) activity. Similarly, a common gain-of-function mutation in the LPL gene is associated with reduced risk for CVD.

LPL is central for the metabolism of lipids in blood. The enzyme acts at the endothelial surface of the capillary bed where it hydrolyzes triglycerides in circulating triglyceride-rich lipoproteins (TRLs) and thereby allows uptake of fatty acids in adjacent tissues. LPL activity has to be rapidly modulated to adapt to the metabolic demands of different tissues. The current view is that LPL is constitutively expressed and that the rapid modulation of the enzymatic activity occurs by some different controller proteins. Angiopoietin-like protein 4 (ANGPTL4) is one of the main candidates for control of LPL activity. ANGPTL4 causes irreversible inactivation through dissociation of the active LPL dimer to inactive monomers. Other proteins that have effects on LPL activity are the APOCs which are surface components of the substrate TRLs. APOC2 is a well-known LPL co-factor, whereas APOC1 and APOC3 independently inhibit LPL activity.

Given the important role of LPL for triglyceride homeostasis in blood, the aim of this thesis was to find small molecules that could increase LPL activity and serve as lead compounds in future drug discovery efforts. Another aim was to investigate the molecular mechanisms for how APOC1 and APOC3 inhibit LPL activity.

Using a small molecule screening library we have identified small molecules that can protect LPL from inactivation by ANGPTL4 during incubations in vitro. Following a structure-activity relationship study we have synthesized lead compounds that more efficiently protect LPL from inactivation by ANGPTL4 in vitro and also have dramatic triglyceride-lowering properties in vivo. In a separate study we show that low concentrations of fatty acids possess the ability to prevent inactivation of LPL by ANGPTL4 under in vitro conditions.

With regard to APOC1 and APOC3 we demonstrate that when bound to TRLs, these apolipoproteins prevent binding of LPL to the lipid/water interface. This results in decreased lipolysis and in an increased susceptibility of LPL to inactivation by ANGPTL4. We demonstrate that hydrophobic amino acid residues that are centrally located in the APOC3 molecule are critical for attachment of this protein to lipid emulsion particles and consequently for inhibition of LPL activity.

In summary, this work has identified a lead compound that protects LPL from inactivation by ANGPTL4 in vitro and lowers triglycerides in vivo. In addition, we propose a molecular mechanism for inhibition of LPL activity by APOC1 and APOC3.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2014. 56 p.
Umeå University medical dissertations, ISSN 0346-6612 ; 1669
LPL, APOC1, APOC2, APOC3, ANGPTL4, enzyme inactivation, lipoprotein metabolism, triglycerides, fatty acids, hypertriglyceridemia, CVD, small molecule screening, structure-activity relationship
National Category
Cell and Molecular Biology
Research subject
Medicine, cardiovascular disease
urn:nbn:se:umu:diva-91662 (URN)978-91-7601-115-7 (ISBN)
Public defence
2014-08-27, NUS - Norrlands universitetssjukhus, Sal E04, Byggnad 6E, Umeå Universitet, Umeå, 14:00 (English)
Available from: 2014-08-15 Created: 2014-08-13 Last updated: 2014-08-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Larsson, MikaelOlivecrona, Gunilla
By organisation
Physiological chemistry
In the same journal
Journal of Biological Chemistry
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 109 hits
ReferencesLink to record
Permanent link

Direct link