umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface complexes of monomethyl phosphate stabilized by hydrogen bonding on goethite (α-FeOOH) nanoparticles
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2012 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 386, no 1, 350-358 p.Article in journal (Refereed) Published
Abstract [en]

Typically, a significant fraction of phosphorus in soils is composed of organic phosphates, and this fraction thus plays an important role in the global phosphorus cycle. Here we have studied adsorption of monomethyl phosphate (MMP) to goethite (α-FeOOH) as a model system in order to better understand the mechanisms behind adsorption of organic phosphates to soil minerals, and how adsorption affects the stability of these molecules. The adsorption reactions and stability of MMP on goethite were studied at room temperature as a function of pH, time and total concentration of MMP by means of quantitative batch experiments, potentiometry and infrared spectroscopy. MMP was found to be stable at the water-goethite interface within the pH region 3-9 and over extended periods of time, as well as in solution. The infrared spectra indicated that MMP formed three predominating pH-dependent surface complexes on goethite, and that these interacted monodentately with surface Fe. The complexes differed in hydrogen bonding interactions via the auxiliary oxygens of the phosphate group. The presented surface complexation model was based on the collective spectroscopic and macroscopic results, using the Basic Stern approach to describe the interfacial region. The model consisted of three monodentate inner sphere surface complexes where the MMP complexes were stabilized by hydrogen bonding to a neighboring surface site. The three complexes, which had equal proton content and thus could be defined as surface isomers, were distinguished by the distribution of charge over the 0-plane and β-plane. In the high pH-range, MMP acted as a hydrogen bond acceptor whereas it was a hydrogen bond donor at low pH.

Place, publisher, year, edition, pages
Elsevier, 2012. Vol. 386, no 1, 350-358 p.
Keyword [en]
Monomethyl phosphate, Goethite, Adsorption, Surface complexation, Infrared spectroscopy Basic Stern Model, Hydrogen bonding, Surface isomers
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-58074DOI: 10.1016/j.jcis.2012.07.042PubMedID: 22901376OAI: oai:DiVA.org:umu-58074DiVA: diva2:546729
Available from: 2012-08-24 Created: 2012-08-24 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Persson, PerAndersson, ToveNelson, HannaSjöberg, StaffanGiesler, ReinerLövgren, Lars
By organisation
Department of ChemistryDepartment of Ecology and Environmental Sciences
In the same journal
Journal of Colloid and Interface Science
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 250 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf