Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Trypanosoma brucei thymidine kinase is tandem protein consisting of two homologous parts, which together enable efficient substrate binding
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Department of Biochemistry, Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran.
Show others and affiliations
2012 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 287, no 21, p. 17628-17636Article in journal (Refereed) Published
Abstract [en]

Trypanosoma brucei causes African sleeping sickness, a disease for which existing chemotherapies are limited by their toxicity or lack of efficacy. We have found that four parasites, including T. brucei, contain genes where two or four thymidine kinase (TK) sequences are fused into a single open reading frame. The T. brucei full-length enzyme as well as its two constituent parts, domain 1 and domain 2, were separately expressed and characterized. Of potential interest for nucleoside analog development, T. brucei TK was less discriminative against purines than human TK1 with the following order of catalytic efficiencies: thymidine > deoxyuridine ≫ deoxyinosine > deoxyguanosine. Proteins from the TK1 family are generally dimers or tetramers, and the quaternary structure is linked to substrate affinity. T. brucei TK was primarily monomeric but can be considered a two-domain pseudodimer. Independent kinetic analysis of the two domains showed that only domain 2 was active. It had a similar turnover number (k(cat)) as the full-length enzyme but could not self-dimerize efficiently and had a 5-fold reduced thymidine/deoxyuridine affinity. Domain 1, which lacks three conserved active site residues, can therefore be considered a covalently attached structural partner that enhances substrate binding to domain 2. A consequence of the non-catalytic role of domain 1 is that its active site residues are released from evolutionary pressure, which can be advantageous for developing new catalytic functions. In addition, nearly identical 89-bp sequences present in both domains suggest that the exchange of genetic material between them can further promote evolution.

Place, publisher, year, edition, pages
2012. Vol. 287, no 21, p. 17628-17636
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:umu:diva-58608DOI: 10.1074/jbc.M112.340059ISI: 000306373000061PubMedID: 22442154Scopus ID: 2-s2.0-84861207232OAI: oai:DiVA.org:umu-58608DiVA, id: diva2:549269
Available from: 2012-09-04 Created: 2012-09-04 Last updated: 2023-03-24Bibliographically approved
In thesis
1. Targeting the nucleotide metabolism of the mammalian pathogen Trypanosoma brucei
Open this publication in new window or tab >>Targeting the nucleotide metabolism of the mammalian pathogen Trypanosoma brucei
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Trypanosoma brucei causes African sleeping sickness in humans and Nagana in cattle. There are no vaccines available against the disease and the current treatment is also not satisfactory because of inefficacy and numerous side effects of the used drugs.

T. brucei lacks de novo synthesis of purine nucleosides; hence it depends on the host to make its purine nucleotides. T. brucei has a high affinity adenosine kinase (TbAK), which phosphorylates adenosine, deoxyadenosine (dAdo), inosine and their analogs. RNAi experiments confirmed that TbAK is responsible for the salvage of dAdo and the toxicity of its substrate analogs. Cell growth assays with the dAdo analogs, Ara-A and F-Ara-A, suggested that TbAK could be exploited for drug development against the disease.

It has previously been shown that when T. brucei cells were cultivated in the presence of 1 mM deoxyadenosine (dAdo), they showed accumulation of dATP and depletion of ATP nucleotides. The altered nucleotide levels were toxic to the trypanosomes. However the salvage of dAdo in trypanosomes was dramatically reduced below 0.5 mM dAdo. Radiolabeled dAdo experiments showed that it (especially at low concentrations) is cleaved to adenine and converted to ATP. The recombinant methylthioadenosine phosphorylase (TbMTAP) cleaved methylthioadenosine, dAdo and adenosine into adenine and sugar-1-P in a phosphate-dependent manner. The trypanosomes became more sensitive to dAdo when TbMTAP was down-regulated in RNAi experiments. The RNAi experiments confirmed that trypanosomes avoid dATP accumulation by cleaving dAdo. The TbMTAP cleavage-resistant nucleoside analogs, FANA-A and Ara-A, successfully cured T. brucei-infected mice.

The DNA building block dTTP can be synthesized either via thymidylate synthase in the de novo pathway or via thymidine kinase (TK) by salvage synthesis. We found that T. brucei and three other parasites contain a tandem TK where the gene sequence was repeated twice or four times in a single open reading frame. The recombinant T. brucei TK, which belongs to the TK1 family, showed broad substrate specificity. The enzyme phosphorylated the pyrimidine nucleosides thymidine and deoxyuridine, as well as the purine nucleosides deoxyinosine and deoxyguanosine. When the repeated sequences of the tandem TbTK were expressed individually as domains, only domain 2 was active. However, the protein could not dimerize and had a 5-fold reduced affinity to its pyrimidine substrates but a similar turnover number as the full-length enzyme. The expressed domain 1 was inactive and sequence analysis revealed that some active residues, which are needed for substrate binding and catalysis, are absent. Generally, the TK1 family enzymes form dimers or tetramers and the quaternary structure is linked to the affinity for the substrates. The covalently linked inactive domain-1 helps domain-2 to form a pseudodimer for the efficient binding of substrates. In addition, we discovered a repetition of an 89-bp sequence in both domain 1 and domain 2, which suggests a genetic exchange between the two domains.

T. brucei is very dependent on de novo synthesis via ribonucleotide reductase (RNR) for the production of dNTPs. Even though T. brucei RNR belongs to the class Ia RNR family and contains an ATP-binding cone, it lacks inhibition by dATP. The mechanism behind the RNR activation by ATP and inactivation by dATP was a puzzle for a long time in the ~50 years of RNR research. We carried out oligomerization studies on mouse and E. coli RNRs, which belongs to the same family as T. brucei, to get an understanding of the molecular mechanism behind overall activity regulation. We found that the oligomerization status of RNRs and overall activity mechanism are interlinked with each other. 

Place, publisher, year, edition, pages
Umeå: Umeå University, 2013. p. 48
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 1524
Keywords
Trypanosoma brucei, adenosine kinase, thymidine kinase, methylthioadenosine phosphorylase, mouser ribonucleotide reductase, E. coli ribonucleotide reductase, RNR, Ara-A, F-Ara-A, dNTP, NTP, doexynucleotide metabolism, nucleosides, nucleoside kinases, allosteric regulation
National Category
Biochemistry and Molecular Biology
Research subject
biological chemistry
Identifiers
urn:nbn:se:umu:diva-80904 (URN)978-91-7459-737-0 (ISBN)
Public defence
2013-11-08, KB3A9, KBC-huset,, Umeå, 10:00 (English)
Opponent
Supervisors
Projects
Targeting the nucleotide metabolism of the mammalian pathogen Trypanosoma brucei.
Funder
Swedish Research CouncilSida - Swedish International Development Cooperation Agency
Available from: 2013-10-18 Created: 2013-09-27 Last updated: 2018-06-08Bibliographically approved
2. Targets and strategies for drug development against human African sleeping sickness
Open this publication in new window or tab >>Targets and strategies for drug development against human African sleeping sickness
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Trypanosoma brucei is a causative agent of African sleeping sickness. It is an extracellular parasite which circulates in the blood, lymph and eventually invades the central nervous system. There is a great need for new medicines against the disease and specific properties of nucleoside kinases in the pathogen can be exploited as targets for chemotherapy. 

T. brucei contains a gene where two thymidine kinase sequences are fused into a single open reading frame. These types of tandem thymidine kinases were found only in different types of parasites, which made us to believe that it might be beneficial for them. Each thymidine kinase sequence in these tandem enzymes are here referred to as a domain. By cloning and expressing each domain from T. brucei separately, we found that domain 1 was inactive and domain 2 was as active as the full-length enzyme. T. brucei thymidine kinase phosphorylated the pyrimidine nucleosides thymidine and deoxyuridine and to some extent purine nucleosides like deoxyinosine and deoxyguanosine. Human thymidine kinase increases the affinity to its substrates when it forms oligomers. Similarly, the T. brucei two thymidine kinase sequences, which can be viewed as a pseudodimer, had a higher affinity to its substrates than domain 2 alone. 

T. brucei lacks de novo purine biosynthesis and it is therefore dependent on salvaging the required purine nucleotides for RNA and DNA synthesis from the host. Purine salvage is considered as a target for drug development. It has been shown that in the presence of deoxyadenosine in the growth medium, the parasites accumulate high levels of dATP and the extensive phosphorylation of deoxyadenosine leads to depleted ATP pools. Initially, we wondered if deoxyadenosine could be used as a drug against T. brucei. However, we found that T. brucei is partially protected against deoxyadenosine because it was cleaved by the enzyme methylthioadenosine phosphorylase (MTAP) to adenine and ribose-1-phosphate. At higher concentration of deoxyadenosine, 3 the formed adenine was not efficiently salvaged into ATP and started to inhibit MTAP instead. The deoxyadenosine was then instead phosphorylated by adenosine kinase leading to accumulation of dATP. The MTAP reaction makes deoxyadenosine itself useless as a drug and instead we focused on finding analogues of deoxyadenosine or adenosine that were cleavage-resistant and at the same time good substrates of T. brucei adenosine kinase. Our best hit was then 9-(2-deoxy-2-fluoro-ß-D-arabinofuranosyl) adenine (FANA-A). An additional advantage of FANA-A as a drug was that it was taken up by the P1 nucleoside transporter family, which makes it useful also against multidrug resistant parasites that often have lost the P2 transporter function and take up their purines solely by the P1 transporter. In parallel with our study of nucleoside metabolism in T. brucei, we also have a collaboration project where we screen essential oils from plants which are used in traditional medicine. If the essential oils are active against the trypanosomes, we further analyze the different components in the oils to identify new drugs against African sleeping sickness. One such compound identified from the plant Smyrnium olusatrum is isofuranodiene, which inhibited T. brucei proliferation with an IC50 value of 3 μM.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2017. p. 36
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 1884
Keywords
T. brucei thymidine kinase, T. brucei methylthioadenosine phosphorylase, FANA-A purine nucleoside analogues, essential oils
National Category
Biochemistry and Molecular Biology Pharmacology and Toxicology
Identifiers
urn:nbn:se:umu:diva-131074 (URN)978-91-7601-675-6 (ISBN)
Public defence
2017-03-03, KB.E3.01, KBC-Huset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2017-02-10 Created: 2017-02-05 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Ranjbarian, FarahnazVodnala, MunenderVodnala, Sharvani MunenderRofougaran, RezaThelander, LarsHofer, Anders

Search in DiVA

By author/editor
Ranjbarian, FarahnazVodnala, MunenderVodnala, Sharvani MunenderRofougaran, RezaThelander, LarsHofer, Anders
By organisation
Department of Medical Biochemistry and Biophysics
In the same journal
Journal of Biological Chemistry
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 511 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf