umu.sePublications
ReferencesLink to record
Permanent link

Direct link
Materials for Hydrogen storage and synthesis of new materials by hydrogenation
2012 (English)Doktorsavhandling, sammanläggning (Other academic)
Abstract [en]

The search for new materials for hydrogen storage is important for the development of future hydrogen energy applications. In this Thesis, it is shown that new materials with interesting properties can be synthesized by the reaction of hydrogen with various nanocarbon precursors. The thesis consists of two parts. The first part is devoted to studies of hydrogen storage in some metal-organic frameworks (MOFs) and nanostructured carbon materials, while the second part describes synthesis of new materials by the reaction of hydrogen gas with various carbon materials (i.e. fullerene C60, single-walled carbon nanotubes (SWCNTs), and fullerene C60 encapsulated inside SWCNTs (C60@SWCNTs)).

Hydrogen adsorption was measured for a set of Zn- and Co-based MOFs at near ambient temperatures. MOFs synthesized using different metal clusters and organic connecting ligands allowed to study effects of different surface area, pore volume, and pore shapes on hydrogen storage parameters. Hydrogen adsorption values in the studied MOFs correlated well with surface area and pore volume but did not exceed 0,75wt.%. Therefore, new methods to improve the hydrogen storage capacity in MOFs were investigated. The addition of metal catalysts was previously reported to improve significantly hydrogen storage in MOFs. In this thesis the effect of Pt catalyst addition on hydrogen adsorption in MOF-5 was not confirmed. Contrary to previous reports, hydrogen adsorption in MOF-5 mixed/modified with Pt catalysts had fast kinetics, correlated well with surface area, and was on the same level as for unmodified MOF-5. New nanostructured carbon materials were synthesized by the reaction between fullerene C60 and coronene/anthracene. Despite negligible surface area these materials adsorbed up to 0,45wt.% of hydrogen at ambient temperatures.

The reaction of fullerene C60 with hydrogen gas was studied at elevated temperatures and hydrogen pressures. In situ gravimetric monitoring of the reaction was performed in a broad temperature interval with/without addition of metal catalysts (i.e. Pt and Ni). The reaction resulted in synthesis of hydrogenated fullerenes C60Hx (with x≤56) followed by fullerene cage fragmentation and collapse upon prolonged duration of hydrogen treatment. Possible mechanisms of C60 hydrogenation and fragmentation were discussed. It is demonstrated that reaction of SWCNTs with hydrogen gas at elevated temperatures and hydrogen pressures can be used for nanotube opening, purification from amorphous carbon, side-wall hydrogenation, and partial unzipping of SWCNTs. Some graphene nanoribbons (GNRs) were synthesized as the result of SWCNTs unzipping. A surprising ability of hydrogen to penetrate inside SWNTs and to react with encapsulated fullerene C60 was demonstrated.

Abstract [sv]

Sökandet efter nya material för vätelagring är viktigt för utveckling av framtida väteenergitillämpningar. I denna avhandling visas att nya material med intressanta egenskaper kan syntetiseras genom reaktion av väte med olika nanokolprekursorer. Avhandlingen består av två delar. Den första delen ägnas åt studier av vätelagring i vissa metall-organiska fackverk (så kallade MOFs) och nanostrukturerade kolmaterial medan den andra delen beskriver syntes av nya material genom reaktion av vätgas med olika kolmaterial (dvs. fulleren C60, enkelväggiga kolnanorör (SWCNTs) och fulleren C60 kapslat i SWCNTs (C60 @ SWCNTs)).

Väteadsorptionen mättes för ett antal Zn- och Co-baserade MOFs vid rumstemperatur. MOFs syntetiserades med hjälp av olika metallkluster och organiska ligander för att studera effekterna av olika yta, porvolym och porformer på vätelagringsparametrarna. Väteadsorptionsvärden i de studerade MOFs korrelerade väl med yta och porvolym, men översteg inte 0,75wt.%. Därför undersöktes nya metoder för att förbättra kapaciteten för vätelagring i MOFs. Tillsättning av metallkatalysatorer har tidigare rapporterats avsevärt förbättra vätelagring i MOFs. I denna avhandling kunde effekten av en tillsats av Pt-katalysator på väteadsorption i MOF-5 inte bekräftas. I motsats till tidigare rapporter hade väteadsorption i MOF-5 blandad/modifierad med Pt-katalysatorer snabb kinetik och korrelerade väl med arean, men var på samma nivå som för omodifierad MOF-5. Nya nanostrukturerade kolmaterial syntetiserades genom reaktion mellan fulleren C60 och coronene/antracene. Trots försumbar yta adsorberade dessa material upp till 0,45wt.% väte vid rumstemperatur.

Reaktionen av fulleren C60 med vätgas studerades vid förhöjda temperaturer och vätetryck. In situ gravimetrisk övervakning av reaktionen utfördes i ett brett temperaturintervall med/utan tillsats av metallkatalysatorer (dvs. Pt och Ni). Reaktionen resulterade i syntes av hydrogenerade fullerener C60Hx (med x≤56) följt av fragmentering och kollaps av fullerenstrukturen vid förlängd varaktighet av vätebehandlingen. Möjliga mekanismer för hydrering och fragmentering av C60 diskuteras. Det har visats att reaktionen mellan SWCNTs och vätgas vid förhöjda temperaturer och vätetryck kan användas för öppning av nanorör, borttagning av amorft kol, funktionalisering av sidoväggar och partiell "blixtlåsöppning" av SWCNTs. Reaktionen kan också syntetisera grafen-nanoband (GNRs) som en följd av att SWCNTs öppnas på längden. En överraskande stor förmåga för väte att tränga in i SWNT och där reagera med inkapslade fullerenmolekyler C60 demonstrerades.

Place, publisher, year, pages
Umeå: Umeå universitet, 2012. 85 p.
Keyword [en]
Fullerene C60, MOFs, CNTs, SWCNTs, PAHs, peapods, hydrogen, hydrogen storage, hydrogenation, adsorption, surface area, pore volume, spillover, nanoribbons, fragmentation
National Category
Physical Sciences
Research subject
Physical Chemistry, Physics
Identifiers
urn:nbn:se:umu:diva-58663 (URN)978-91-7459-463-8 (ISBN)oai:DiVA.org:umu-58663 (OAI)
Public defence
2012-09-28, Naturvetarhuset, N300, Umeå Universitet, Umeå, 13:00 (English)
Opponent
Supervisors
Available from2012-09-07 Created:2012-09-04 Last updated:2012-09-05Bibliographically approved
List of papers
1. Thermal decomposition of C60H18
Open this publication in new window or tab >>Thermal decomposition of C60H18
2009 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 30, 13133-13138Artikel i tidskrift (Refereed) Published
Abstract [en]

Products of thermal dehydrogenation of C 60H18(which mainly occurs at 450-600°C) were studied by XRD, Raman, IR and mass spectrometry. IR spectra indicate that dehydrogenation resulted in partial recovery of pristine C 60. XRD data indicate that the cell parameter of the face-centered cubic structure, which is higher for C 60H18(14.55 Å) than for C60(14.17 Å), remained higher following heat treatment, and heating at>500° C caused further expansion (to 14.78 Å). The increase in the cell parameter correlates with the beginning of partial fullerene cage collapse (corroborated by IR, Raman and MS data) and is suggested to result from “self-doping”.

American Chemical Society (ACS), 2009
National Category
Physical Sciences
Identifiers
urn:nbn:se:umu:diva-30008 (URN)10.1021/jp9024377 (DOI)
Available from2009-11-30 Created:2009-11-30 Last updated:2012-09-07Bibliographically approved
2. Hydrogen storage in Co-and Zn-based metal-organic frameworks at ambient temperature
Open this publication in new window or tab >>Hydrogen storage in Co-and Zn-based metal-organic frameworks at ambient temperature
2009 (English)In: International journal of hydrogen energy, ISSN 0360-3199, Vol. 34, no 24, 9754-9759Artikel i tidskrift (Refereed) Published
Abstract [en]

Hydrogen adsorption properties of some Co-and Zn-based Metal-Organic Framework (MOF) materials were studied at near ambient temperatures. Maximal hydrogen storage capacity of 0.75 wt% was found for a Zn-based material at 175 Bar hydrogen pressure and T = -4 degrees C. Hydrogen adsorption correlated linearly with BET surface area and strongly depends on temperature. Relatively low structural stability of some MOF's results in framework collapse during degassing and hydrogen adsorption measurements.

Elsevier, 2009
National Category
Physical Sciences
Identifiers
urn:nbn:se:umu:diva-30004 (URN)10.1016/j.ijhydene.2009.10.001 (DOI)000272856400014 (ISI)
Available from2009-11-30 Created:2009-11-30 Last updated:2012-09-07Bibliographically approved
3. High-temperature reactions of C60 with polycyclic aromatic hydrocarbons
Open this publication in new window or tab >>High-temperature reactions of C60 with polycyclic aromatic hydrocarbons
2010 (English)In: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 368, no 1-2, 49-57Artikel i tidskrift (Refereed) Published
Abstract [en]

Fullerenes are proposed as a precursor for preparation of nanocarbon materials using controlled collapse of cage structure by high temperature reaction with polycyclic aromatic hydrocarbons. The chemical modification of C60 by reaction with anthracene and coronene was studied over a broad temperature interval. The products of the reaction were characterized by X-ray diffraction, and Raman and IR spectroscopy. Mono- and multi-adducts of C60 with anthracene were obtained in the temperature interval 290–400 °C. Above 400 °C the C60 adducts are not stable and decompose back to C60 and anthracene. No chemical adducts of C60 with coronene were found below 500 °C. Above this temperature fullerite structure was found to expand reflecting interaction with coronene melt and vapor. The reactions of C60 with anthracene and C60 with coronene at temperatures above 650 °C resulted in fullerene cage collapse and formation of nanocarbons. These nanocarbons were found to store up to 0.45 wt% of hydrogen at ambient temperatures despite negligible surface area. 

Elsevier, 2010
Keyword
fullerene, polycyclic aromatic hydrocarbons, hydrogen adsorption, raman spectroscopy, IR spectroscopy, x-ray diffraction
National Category
Physical Sciences
Identifiers
urn:nbn:se:umu:diva-35953 (URN)10.1016/j.chemphys.2009.12.008 (DOI)
Available from2010-09-10 Created:2010-09-10 Last updated:2012-09-07Bibliographically approved
4. Hydrogen adsorption in Pt catalyst/MOF-5 materials
Open this publication in new window or tab >>Hydrogen adsorption in Pt catalyst/MOF-5 materials
2010 (English)In: Microporous and Mesoporous Materials, ISSN 1387-1811, Vol. 135, no 1-3, 201-205Artikel i tidskrift (Refereed) Published
Abstract [en]

Hydrogen adsorption properties of well-known MOF-5 were studied at near ambient temperature and hydrogen pressures up to 120 bar. Pristine material was doped with Pt catalysts supported on activated carbon (AC) using two previously described procedures: physical mixture of a catalyst with MOF-5 and “bridging” procedure (MOF-5 and catalyst particles connected via carbon bridges) MOF-5. The maximum hydrogen adsorption measured on doped MOF-5 was 0.43 wt.%. These values are on the same level or even less than for catalyst free MOF-5 material. Therefore, doping of MOF-5 material with Pt catalyst has not resulted in increase of hydrogen storage value. Hydrogen adsorption for the samples with added catalyst showed correlation with BET surface area, exhibited isotherms typical for physisorption and no features which could be assigned to spillover effect.

Elsevier, 2010
Keyword
metal–organic framework, hydrogen storage, hydrogen adsorption, physisorption, spillover
National Category
Physical Sciences
Identifiers
urn:nbn:se:umu:diva-35955 (URN)10.1016/j.micromeso.2010.07.018 (DOI)
Available from2010-09-10 Created:2010-09-10 Last updated:2012-09-07Bibliographically approved
5. Reaction of C60 with Hydrogen gas
Open this publication in new window or tab >>Reaction of C60 with Hydrogen gas : In Situ monitoring and pathways
2011 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 115, no 23, 11484-11492Artikel i tidskrift (Refereed) Published
Abstract [en]

Kinetics and pathways of C60 reaction with hydrogen gas were studied in a broad temperature interval and over extended periods of time. Specifically, hydrogenation was monitored in situ at high temperature and high hydrogen pressure conditions using the gravimetric method. The shape of gravimetric curve was found to depend on hydrogenation temperature: at 350–400 °C saturation of the sample weight was achieved, whereas at 420–440 °C the sample weight reached the maximum and decreased upon prolonged hydrogenation. The weight decrease is due to fullerene cage fragmentation with formation of light hydrocarbons evaporating from the sample. Hydrogenation products were studied by X-ray diffraction, MALDI TOF and APPI FT-ICR mass spectrometry, liquid chromatography, and elemental analysis. Hydrogenation pathways (from C60H18 up to C60H56) and possible mechanisms of hydrogenation-induced fragmentation of fulleranes are discussed.

American Chemical Society (ACS), 2011
National Category
Chemical Sciences
Identifiers
urn:nbn:se:umu:diva-45231 (URN)10.1021/jp202715g (DOI)
Available from2011-06-28 Created:2011-06-28 Last updated:2012-09-07Bibliographically approved
6. Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen
Open this publication in new window or tab >>Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen : road to graphane nanoribbons
Show others...
2011 (English)In: ACS Nano, ISSN 1936-0851, Vol. 5, no 6, 5132-5140Artikel i tidskrift (Refereed) Published
Abstract [en]

Reaction of single-walled carbon nanotubes (SWNTs) with hydrogen gas was studied in a temperature interval of 400-550 C and at hydrogen pressure of 50 bar. Hydrogenation of nanotubes was observed for samples treated at 400-450 C with about 1/3 of carbon atoms forming covalent C-H bonds, whereas hydrogen treatment at higher temperatures (550 C) occurs as an etching. Unzipping of some SWNTs into graphene nanoribbons is observed as a result of hydrogenation at 400-550 C. Annealing in hydrogen gas at elevated conditions for prolonged periods of time (72 h) is demonstrated to result also in nanotube opening, purification of nanotubes from amorphous carbon, and removal of carbon coatings from Fe catalyst particles, which allows their complete elimination by acid treatment.

Keyword
carbon nanotube, SWNT, hydrogen, graphene, graphane
National Category
Physical Sciences
Identifiers
urn:nbn:se:umu:diva-46643 (URN)10.1021/nn201224k (DOI)
Available from2011-09-08 Created:2011-09-08 Last updated:2012-09-07Bibliographically approved
7. Effect of catalysts on the reaction of C60 with hydrogen
Open this publication in new window or tab >>Effect of catalysts on the reaction of C60 with hydrogen
2012 (English)In: Fullerenes, nanotubes, and carbon nanostructures (Print), ISSN 1536-383X, E-ISSN 1536-4046, Vol. 20, no 4-7, 319-323Artikel i tidskrift (Refereed) Published
Abstract [en]

The reaction of C-60/catalyst with hydrogen gas was studied at 400 degrees C and 50 bar of H-2 pressure. The addition of Pt- or Ni-catalysts significantly accelerated kinetics of the hydrogenation reaction and resulted in a dramatic change of the C60Hx crystal structure. Samples reacted without catalyst preserved the fcc structure typical for pristine C-60 but with expanded unit cells. Fulleranes C60Hx obtained using catalytic hydrogenation exhibited not only the fcc structure (at relatively low hydrogenation degree) but also the bcc structure of C60Hx (with x > 18). The bcc structure corresponds to highly hydrogenated material with an average volume per C-60 molecule of 817-849 angstrom(3).

Taylor & Francis Group, 2012
Keyword
Fullerene, fullerane, hydrogenation, hydrogenated fullerene, metal catalysts
National Category
Physical Sciences
Identifiers
urn:nbn:se:umu:diva-56435 (URN)10.1080/1536383X.2012.655113 (DOI)000304297500004 (ISI)
Available from2012-06-18 Created:2012-06-18 Last updated:2012-09-07Bibliographically approved
8. Hydrogen-driven collapse of C60 inside single-walled Carbon Nanotubes
Open this publication in new window or tab >>Hydrogen-driven collapse of C60 inside single-walled Carbon Nanotubes
Show others...
2012 (English)In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 51, no 18, 4435-4439Artikel i tidskrift (Refereed) Published
Weinheim: Wiley-VCH Verlagsgesellschaft, 2012
Keyword
carbon, fullerenes, hydrogenation, nanotubes
National Category
Chemical Sciences
Identifiers
urn:nbn:se:umu:diva-55540 (URN)10.1002/anie.201200946 (DOI)000303158300038 (ISI)
Available from2012-05-25 Created:2012-05-21 Last updated:2012-09-07Bibliographically approved

Open Access in DiVA

fulltext(3951 kB)3055 downloads
File information
File name FULLTEXT01.pdfFile size 3951 kBChecksum SHA-512
166d19f3b5aacdea051107e71b489180b4801e4f465f2dd23ce26c60c1d4d654e3d60691b8c04faa945a506432f40f14b0820515b18424f66794d718a0a152a3
Typ fulltextMimetype application/pdf

Search in DiVA

By author/editor
Luzan, Serhiy
By organisation
Department of Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Totalt: 3055 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available
Totalt: 1554 hits
ReferencesLink to record
Permanent link

Direct link