umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Left ventricular strain and peak systolic velocity: responses to controlled changes in load and contractility, explored in a porcine model
Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Anaesthesiology.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Cardiology.
Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Anaesthesiology.ORCID iD: 0000-0002-5325-2688
Anesthesiology, University of Brussels, Belgium.
Show others and affiliations
2012 (English)In: Cardiovascular Ultrasound, ISSN 1476-7120, E-ISSN 1476-7120, Vol. 10, no 22Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Tissue velocity echocardiography is increasingly used to evaluate global and regional cardiac function. Previous studies have suggested that the quantitative measurements obtained during ejection are reliable indices of contractility, though their load-sensitivity has been studied in different settings, but still remains a matter of controversy. We sought to characterize the effects of acute load change (both preload and afterload) and change in inotropic state on peak systolic velocity and strain as a measure of LV contractility.

METHODS: Thirteen anesthetized juvenile pigs were studied, using direct measurement of left ventricular pressure and volume and transthoracic echocardiography. Transient inflation of a vena cava balloon catheter produced controlled load alterations. At least eight consecutive beats in the sequence were analyzed with tissue velocity echocardiography during the load alteration and analyzed for change in peak systolic velocities and strain during same contractile status with a controlled load alteration. Two pharmacological inotropic interventions were also included to generate several myocardial contractile conditions in each animal.

RESULTS: Peak systolic velocities reflected the drug-induced changes in contractility in both radial and longitudinal axis. During the acute load change, the peak systolic velocities remain stable when derived from signal in the longitudinal axis and from the radial axis. The peak systolic velocity parameter demonstrated no strong relation to either load or inotropic intervention, that is, it remained unchanged when load was systematically and progressively varied (peak systolic velocity, longitudinal axis, control group beat 1- 5.72 +/- 1.36 with beat 8- 6.49 +/- 1.28 cm/sec, 95% confidence interval), with the single exception of the negative inotropic intervention group where peak systolic velocity decreased a small amount during load reduction (beat 1- 3.98 +/- 0.92 with beat 8- 2.72 +/- 0.89 cm/sec). Systolic strain, however, showed a clear degree of load-dependence.

CONCLUSIONS: Peak systolic velocity appears to be load-independent as tested by beat-to-beat load reduction, while peak systolic strain appears to be load-dependent in this model. Peak systolic velocity, in a controlled experimental model where successive beats during load alteration are assessed, has a strong relation to contractility. Peak systolic velocity, but not peak strain rate, is largely independent of load, in this model. More study is needed to confirm this finding in the clinical setting.

Place, publisher, year, edition, pages
2012. Vol. 10, no 22
Keyword [en]
Tissue velocities echocardiography; Ventricular function; Load
National Category
Physiology
Identifiers
URN: urn:nbn:se:umu:diva-59415DOI: 10.1186/1476-7120-10-22ISBN: 1476-7120 (Electronic) 1476-7120 (Linking) (print)OAI: oai:DiVA.org:umu-59415DiVA: diva2:552136
Note

A'roch, Roman Gustafsson, Ulf Johansson, Goran Poelaert, Jan Haney, Michael Journal article Cardiovascular ultrasound Cardiovasc Ultrasound. 2012 May 28;10(1):22.

Available from: 2012-09-13 Created: 2012-09-13 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22640913

Search in DiVA

By author/editor
A'Roch, RomanGustafsson, UlfJohansson, GöranHaney, Michael
By organisation
AnaesthesiologyCardiology
In the same journal
Cardiovascular Ultrasound
Physiology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 103 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf